Cargando…
Momentum contrast transformer for COVID-19 diagnosis with knowledge distillation
Intelligent diagnosis has been widely studied in diagnosing novel corona virus disease (COVID-19). Existing deep models typically do not make full use of the global features such as large areas of ground glass opacities, and the local features such as local bronchiolectasis from the COVID-19 chest C...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232920/ https://www.ncbi.nlm.nih.gov/pubmed/37303605 http://dx.doi.org/10.1016/j.patcog.2023.109732 |
Sumario: | Intelligent diagnosis has been widely studied in diagnosing novel corona virus disease (COVID-19). Existing deep models typically do not make full use of the global features such as large areas of ground glass opacities, and the local features such as local bronchiolectasis from the COVID-19 chest CT images, leading to unsatisfying recognition accuracy. To address this challenge, this paper proposes a novel method to diagnose COVID-19 using momentum contrast and knowledge distillation, termed MCT-KD. Our method takes advantage of Vision Transformer to design a momentum contrastive learning task to effectively extract global features from COVID-19 chest CT images. Moreover, in transfer and fine-tuning process, we integrate the locality of convolution into Vision Transformer via special knowledge distillation. These strategies enable the final Vision Transformer simultaneously focuses on global and local features from COVID-19 chest CT images. In addition, momentum contrastive learning is self-supervised learning, solving the problem that Vision Transformer is challenging to train on small datasets. Extensive experiments confirm the effectiveness of the proposed MCT-KD. In particular, our MCT-KD is able to achieve 87.43% and 96.94% accuracy on two publicly available datasets, respectively. |
---|