Cargando…
Quantitative identification of ventral/dorsal nerves through intraoperative neurophysiological monitoring by supervised machine learning
OBJECTIVE: This study aimed to investigate the electro-neurophysiological characteristics of the ventral and dorsal nerves at the L2 segment in a quantitative manner. METHODS: Medical records of consecutive patients who underwent single-level approach selective dorsal rhizotomy (SDR) from June 2019...
Autores principales: | Jiang, Wenbin, Zhan, Qijia, Wang, Junlu, Wei, Min, Li, Sen, Mei, Rong, Xiao, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232959/ https://www.ncbi.nlm.nih.gov/pubmed/37274819 http://dx.doi.org/10.3389/fped.2023.1118924 |
Ejemplares similares
-
Practice guidelines for the supervising professional: intraoperative neurophysiological monitoring
por: Skinner, Stanley A., et al.
Publicado: (2013) -
Practice guidelines for the supervising professional: intraoperative neurophysiological monitoring
por: Gertsch, Jeffrey H., et al.
Publicado: (2018) -
Improvement of the gait pattern after selective dorsal rhizotomy derives from changes of kinematic parameters in the sagittal plane
por: Jiang, Wenbin, et al.
Publicado: (2022) -
Unsupervised machine learning effectively clusters pediatric spastic cerebral palsy patients for determination of optimal responders to selective dorsal rhizotomy
por: Hou, Xiaobin, et al.
Publicado: (2023) -
Intraoperative Neurophysiologic Monitoring, Third Edition
por: Nuwer, Marc R.
Publicado: (2012)