Cargando…
Approaching the mapping limit with closed-loop mapping strategy for deploying neural networks on neuromorphic hardware
The decentralized manycore architecture is broadly adopted by neuromorphic chips for its high computing parallelism and memory locality. However, the fragmented memories and decentralized execution make it hard to deploy neural network models onto neuromorphic hardware with high resource utilization...
Autores principales: | Wang, Song, Yu, Qiushuang, Xie, Tiantian, Ma, Cheng, Pei, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233010/ https://www.ncbi.nlm.nih.gov/pubmed/37274210 http://dx.doi.org/10.3389/fnins.2023.1168864 |
Ejemplares similares
-
Optimal Mapping of Spiking Neural Network to Neuromorphic Hardware for Edge-AI
por: Xiao, Chao, et al.
Publicado: (2022) -
Parallelization of Neural Processing on Neuromorphic Hardware
por: Peres, Luca, et al.
Publicado: (2022) -
Closed-Loop Neuromorphic Benchmarks
por: Stewart, Terrence C., et al.
Publicado: (2015) -
Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware
por: Knight, James C., et al.
Publicado: (2016) -
Mapping and Validating a Point Neuron Model on Intel's Neuromorphic Hardware Loihi
por: Dey, Srijanie, et al.
Publicado: (2022)