Cargando…
Fully automating LI-RADS on MRI with deep learning-guided lesion segmentation, feature characterization, and score inference
INTRODUCTION: Leveraging deep learning in the radiology community has great potential and practical significance. To explore the potential of fitting deep learning methods into the current Liver Imaging Reporting and Data System (LI-RADS) system, this paper provides a complete and fully automatic de...
Autores principales: | Wang, Ke, Liu, Yuehua, Chen, Hongxin, Yu, Wenjin, Zhou, Jiayin, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233056/ https://www.ncbi.nlm.nih.gov/pubmed/37274239 http://dx.doi.org/10.3389/fonc.2023.1153241 |
Ejemplares similares
-
OASIS is Automated Statistical Inference for Segmentation, with applications to multiple sclerosis lesion segmentation in MRI()
por: Sweeney, Elizabeth M., et al.
Publicado: (2013) -
Deep learning for the fully automated segmentation of the inner ear on MRI
por: Vaidyanathan, Akshayaa, et al.
Publicado: (2021) -
Fully automated pelvic bone segmentation in multiparameteric MRI using a 3D convolutional neural network
por: Liu, Xiang, et al.
Publicado: (2021) -
Fully Bayesian Inference for Structural MRI: Application to Segmentation and Statistical Analysis of T2-Hypointensities
por: Schmidt, Paul, et al.
Publicado: (2013) -
Differences between CEUS LI-RADS and CECT LI-RADS in the diagnosis of focal liver lesions in patients at risk for HCC
por: Wen, Rong, et al.
Publicado: (2023)