Cargando…
Automated quantification of 3D wound morphology by machine learning and optical coherence tomography in type 2 diabetes
BACKGROUND: Driven by increased prevalence of type 2 diabetes and ageing populations, wounds affect millions of people each year, but monitoring and treatment remain limited. Glucocorticoid (stress hormones) activation by the enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1) also impairs hea...
Autores principales: | Wang, Yinhai, Freeman, Adrian, Ajjan, Ramzi, Del Galdo, Francesco, Tiganescu, Ana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233090/ https://www.ncbi.nlm.nih.gov/pubmed/37275432 http://dx.doi.org/10.1002/ski2.203 |
Ejemplares similares
-
Automated Detection of Macular Diseases by Optical Coherence Tomography and Artificial Intelligence Machine Learning of Optical Coherence Tomography Images
por: Kuwayama, Soichiro, et al.
Publicado: (2019) -
Automated quantification of Haller’s layer in choroid using swept-source optical coherence tomography
por: Uppugunduri, Sushmitha Rao, et al.
Publicado: (2018) -
Individual Drusen Segmentation and Repeatability and Reproducibility of Their Automated Quantification in Optical Coherence Tomography Images
por: de Sisternes, Luis, et al.
Publicado: (2017) -
Automated quantification of posterior vitreous inflammation: optical coherence tomography scan number requirements
por: Terheyden, Jan Henrik, et al.
Publicado: (2021) -
Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues
por: Garcia-Allende, P. Beatriz, et al.
Publicado: (2011)