Cargando…
Automatic renal mass segmentation and classification on CT images based on 3D U-Net and ResNet algorithms
PURPOSE: To automatically evaluate renal masses in CT images by using a cascade 3D U-Net- and ResNet-based method to accurately segment and classify focal renal lesions. MATERIAL AND METHODS: We used an institutional dataset comprising 610 CT image series from 490 patients from August 2009 to August...
Autores principales: | Zhao, Tongtong, Sun, Zhaonan, Guo, Ying, Sun, Yumeng, Zhang, Yaofeng, Wang, Xiaoying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233136/ https://www.ncbi.nlm.nih.gov/pubmed/37274226 http://dx.doi.org/10.3389/fonc.2023.1169922 |
Ejemplares similares
-
Chest X-ray pneumothorax segmentation using U-Net with EfficientNet and ResNet architectures
por: Abedalla, Ayat, et al.
Publicado: (2021) -
S-ResNet: An improved ResNet neural model capable of the identification of small insects
por: Wang, Pei, et al.
Publicado: (2022) -
Automatic Gender and Age Classification from Offline Handwriting with Bilinear ResNet
por: Rabaev, Irina, et al.
Publicado: (2022) -
A Novel LiDAR Data Classification Algorithm Combined CapsNet with ResNet
por: Wang, Aili, et al.
Publicado: (2020) -
MAC-ResNet: Knowledge Distillation Based Lightweight Multiscale-Attention-Crop-ResNet for Eyelid Tumors Detection and Classification
por: Huang, Xingru, et al.
Publicado: (2022)