Cargando…
Brain-constrained neural modeling explains fast mapping of words to meaning
Although teaching animals a few meaningful signs is usually time-consuming, children acquire words easily after only a few exposures, a phenomenon termed “fast-mapping.” Meanwhile, most neural network learning algorithms fail to achieve reliable information storage quickly, raising the question of w...
Autores principales: | Constant, Marika, Pulvermüller, Friedemann, Tomasello, Rosario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233283/ https://www.ncbi.nlm.nih.gov/pubmed/36807501 http://dx.doi.org/10.1093/cercor/bhad007 |
Ejemplares similares
-
A Neurobiologically Constrained Cortex Model of Semantic Grounding With Spiking Neurons and Brain-Like Connectivity
por: Tomasello, Rosario, et al.
Publicado: (2018) -
A Spiking Neurocomputational Model of High-Frequency Oscillatory Brain Responses to Words and Pseudowords
por: Garagnani, Max, et al.
Publicado: (2017) -
Modelling concrete and abstract concepts using brain-constrained deep neural networks
por: Henningsen-Schomers, Malte R., et al.
Publicado: (2021) -
Neurobiological mechanisms for language, symbols and concepts: Clues from brain-constrained deep neural networks
por: Pulvermüller, Friedemann
Publicado: (2023) -
Brain correlates of action word memory revealed by fMRI
por: Shebani, Zubaida, et al.
Publicado: (2022)