Cargando…

Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae

BACKGROUND: The Mitotic Exit Network (MEN) proteins – including the protein kinase Cdc15 and the protein phosphatase Cdc14 – are essential for exit from mitosis in Saccharomyces cerevisiae. To identify downstream targets of the MEN, we sought telophase arrest bypassed (tab) mutations that bypassed t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shou, Wenying, Deshaies, Raymond J
Formato: Texto
Lenguaje:English
Publicado: BioMed Central 2002
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102333/
https://www.ncbi.nlm.nih.gov/pubmed/11914130
http://dx.doi.org/10.1186/1471-2156-3-4
_version_ 1782120209077764096
author Shou, Wenying
Deshaies, Raymond J
author_facet Shou, Wenying
Deshaies, Raymond J
author_sort Shou, Wenying
collection PubMed
description BACKGROUND: The Mitotic Exit Network (MEN) proteins – including the protein kinase Cdc15 and the protein phosphatase Cdc14 – are essential for exit from mitosis in Saccharomyces cerevisiae. To identify downstream targets of the MEN, we sought telophase arrest bypassed (tab) mutations that bypassed the essential requirement for CDC15. Previous studies identified net1(tab2-1) and CDC14(TAB6-1) as mutations in the RENT complex subunits Net1 and Cdc14, respectively, and revealed that the MEN acts by promoting release of Cdc14 from its nucleolar Net1 anchor during anaphase. However, the remaining tab mutants were not characterized. RESULTS: Fourteen out of fifteen tab mutants were mapped to three recessive (tab1-tab3) and three dominant (TAB5-TAB7) linkage groups. We show that net1(tab2-1) enables growth of tem1Δ, cdc15Δ, dbf2Δ dbf20Δ, and mob1Δ, but not cdc5Δ or cdc14Δ, arguing that whereas the essential task of the first four genes is to promote exit from mitosis, CDC5 possesses additional essential function(s). net1(tab2-1) but not CDC14(TAB6-1) resulted in a high rate of chromosome loss, indicating that Net1 promotes accurate chromosome segregation in addition to its multiple known roles. Finally, TAB1 was shown to be MTR10, a gene encoding nuclear transport receptor/adaptor. In some of the tab mutants including mtr10(tab1-1), defective nuclear export of the ribosomal protein Rpl11b was observed. Furthermore, the transport-defective -31 allele of the karyopherin SRP1, but not the transport competent -49 allele, exhibited a tab phenotype. CONCLUSIONS: Transport-defective mutations in two karyopherins can bypass cdc15Δ, suggesting that the function of the MEN is to promote mitotic exit by regulating nuclear transport.
format Text
id pubmed-102333
institution National Center for Biotechnology Information
language English
publishDate 2002
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-1023332002-04-19 Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae Shou, Wenying Deshaies, Raymond J BMC Genet Research Article BACKGROUND: The Mitotic Exit Network (MEN) proteins – including the protein kinase Cdc15 and the protein phosphatase Cdc14 – are essential for exit from mitosis in Saccharomyces cerevisiae. To identify downstream targets of the MEN, we sought telophase arrest bypassed (tab) mutations that bypassed the essential requirement for CDC15. Previous studies identified net1(tab2-1) and CDC14(TAB6-1) as mutations in the RENT complex subunits Net1 and Cdc14, respectively, and revealed that the MEN acts by promoting release of Cdc14 from its nucleolar Net1 anchor during anaphase. However, the remaining tab mutants were not characterized. RESULTS: Fourteen out of fifteen tab mutants were mapped to three recessive (tab1-tab3) and three dominant (TAB5-TAB7) linkage groups. We show that net1(tab2-1) enables growth of tem1Δ, cdc15Δ, dbf2Δ dbf20Δ, and mob1Δ, but not cdc5Δ or cdc14Δ, arguing that whereas the essential task of the first four genes is to promote exit from mitosis, CDC5 possesses additional essential function(s). net1(tab2-1) but not CDC14(TAB6-1) resulted in a high rate of chromosome loss, indicating that Net1 promotes accurate chromosome segregation in addition to its multiple known roles. Finally, TAB1 was shown to be MTR10, a gene encoding nuclear transport receptor/adaptor. In some of the tab mutants including mtr10(tab1-1), defective nuclear export of the ribosomal protein Rpl11b was observed. Furthermore, the transport-defective -31 allele of the karyopherin SRP1, but not the transport competent -49 allele, exhibited a tab phenotype. CONCLUSIONS: Transport-defective mutations in two karyopherins can bypass cdc15Δ, suggesting that the function of the MEN is to promote mitotic exit by regulating nuclear transport. BioMed Central 2002-03-12 /pmc/articles/PMC102333/ /pubmed/11914130 http://dx.doi.org/10.1186/1471-2156-3-4 Text en Copyright © 2002 Shou and Deshaies; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL.
spellingShingle Research Article
Shou, Wenying
Deshaies, Raymond J
Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae
title Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae
title_full Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae
title_fullStr Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae
title_full_unstemmed Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae
title_short Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae
title_sort multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for cdc15 in exit from mitosis in s. cerevisiae
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC102333/
https://www.ncbi.nlm.nih.gov/pubmed/11914130
http://dx.doi.org/10.1186/1471-2156-3-4
work_keys_str_mv AT shouwenying multipletelophasearrestbypassedtabmutantsalleviatetheessentialrequirementforcdc15inexitfrommitosisinscerevisiae
AT deshaiesraymondj multipletelophasearrestbypassedtabmutantsalleviatetheessentialrequirementforcdc15inexitfrommitosisinscerevisiae