Cargando…
Research on microbial community structure and treatment of dye wastewater with the enhancement of activated sludge by magnetic field at low temperature
This study characterized the effect of different magnetic field (MF) intensities (10–40 mT) on the degradation of dye wastewater by activated sludge and the diversity of the microbial community at a low temperature (5 °C). The examined MF range promoted the degradation of dye wastewater by the micro...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233346/ https://www.ncbi.nlm.nih.gov/pubmed/37274396 http://dx.doi.org/10.1039/d3ra00048f |
Sumario: | This study characterized the effect of different magnetic field (MF) intensities (10–40 mT) on the degradation of dye wastewater by activated sludge and the diversity of the microbial community at a low temperature (5 °C). The examined MF range promoted the degradation of dye wastewater by the microorganisms in the activated sludge at a low temperature. It was found that the optimal degradation performance was achieved at 30 mT. Additionally, the maximum degradation efficiency of COD and chromaticity (66.30% and 60.87%, respectively) were also achieved at 30 mT and the peak TTC-dehydrogenase activity (TTC-DHA) was 9.44 mg TF g(−1) SS. Furthermore, it was revealed that MF enhancement increased the richness and diversity of activated sludge microorganisms, thus promoting the growth and reproduction of activated sludge microorganisms at low temperatures. Bacterial taxa known to effectively participate in the degradation of pollutants by activated sludge were enriched at 30 mT. The dominant bacteria under 30 mT were Flavobacterium, Hydrogenophaga, Gemmatimonadaceae, Zoogloea, Saprospiraceae, Pseudomonas, and Geothrix. |
---|