Cargando…
Systematic Review of Artificial Intelligence for Abnormality Detection in High-volume Neuroimaging and Subgroup Meta-analysis for Intracranial Hemorrhage Detection
PURPOSE: Most studies evaluating artificial intelligence (AI) models that detect abnormalities in neuroimaging are either tested on unrepresentative patient cohorts or are insufficiently well-validated, leading to poor generalisability to real-world tasks. The aim was to determine the diagnostic tes...
Autores principales: | Agarwal, Siddharth, Wood, David, Grzeda, Mariusz, Suresh, Chandhini, Din, Munaib, Cole, James, Modat, Marc, Booth, Thomas C |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233528/ https://www.ncbi.nlm.nih.gov/pubmed/37261453 http://dx.doi.org/10.1007/s00062-023-01291-1 |
Ejemplares similares
-
Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis
por: Din, Munaib, et al.
Publicado: (2023) -
Trends and variation in repeat neuroimaging for children with traumatic intracranial hemorrhage
por: Chaudhari, Pradip P., et al.
Publicado: (2021) -
Utility of Various Ultrafast Magnetic Resonance Sequences in the Detection of Fetal Intracranial Hemorrhage
por: Baburaj, Remya, et al.
Publicado: (2018) -
Editorial: Intelligent Recognition and Detection in Neuroimaging
por: Zhang, Yu-Dong, et al.
Publicado: (2022) -
Deep Learning Applied to Intracranial Hemorrhage Detection
por: Cortés-Ferre, Luis, et al.
Publicado: (2023)