Cargando…
Zero-Dimensional Ignition Model of Boron Agglomerates
[Image: see text] Boron primarily exists in the form of agglomerates in ramjet combustion chambers. However, the model used to predict the ignition time of boron agglomerates is usually based on the single-particle assumption, resulting in inaccurate predictions. This study aims to develop a numeric...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233822/ https://www.ncbi.nlm.nih.gov/pubmed/37273627 http://dx.doi.org/10.1021/acsomega.3c00772 |
_version_ | 1785052342855401472 |
---|---|
author | Duan, Lian Xia, Zhixun Chen, Binbin Ma, Likun Feng, Yunchao Zhang, Jiarui Hu, Jianxin |
author_facet | Duan, Lian Xia, Zhixun Chen, Binbin Ma, Likun Feng, Yunchao Zhang, Jiarui Hu, Jianxin |
author_sort | Duan, Lian |
collection | PubMed |
description | [Image: see text] Boron primarily exists in the form of agglomerates in ramjet combustion chambers. However, the model used to predict the ignition time of boron agglomerates is usually based on the single-particle assumption, resulting in inaccurate predictions. This study aims to develop a numerical model that can accurately describe the ignition of boron agglomerates. The model is based on the ignition model of a single particle boron proposed by the group of Kuo. Thiele modulus and effectiveness factor are introduced to represent the diffusion resistance of reaction gases in the pores of boron agglomerates. The model includes the necessary physical processes to accurately predict the ignition time. The rates of evaporation and heterogeneous reactions involved in the oxide layer removal process are corrected based on the fact that the diffusion rate of (BO)(n) in the liquid oxide layer equals to its consumption rate at the oxide-air interface. To evaluate the accuracy of the model, the obtained results for ignition time are compared with experimental data, showing reasonable consistency between them. The model is then applied to investigate the ignition characteristics of boron agglomerates. Parameters, such as initial average pore diameter, oxide layer thicknesses, initial particle diameter, O(2) concentration, H(2)O concentration, and environmental pressure, are studied for their effects on the ignition time. In summary, the boron ignition model established in this study is a powerful tool to investigate the ignition mechanisms and characteristics of boron agglomerates. It can be further coupled with flow analysis for the detailed simulation of turbulent combustion in ramjet combustors. |
format | Online Article Text |
id | pubmed-10233822 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-102338222023-06-02 Zero-Dimensional Ignition Model of Boron Agglomerates Duan, Lian Xia, Zhixun Chen, Binbin Ma, Likun Feng, Yunchao Zhang, Jiarui Hu, Jianxin ACS Omega [Image: see text] Boron primarily exists in the form of agglomerates in ramjet combustion chambers. However, the model used to predict the ignition time of boron agglomerates is usually based on the single-particle assumption, resulting in inaccurate predictions. This study aims to develop a numerical model that can accurately describe the ignition of boron agglomerates. The model is based on the ignition model of a single particle boron proposed by the group of Kuo. Thiele modulus and effectiveness factor are introduced to represent the diffusion resistance of reaction gases in the pores of boron agglomerates. The model includes the necessary physical processes to accurately predict the ignition time. The rates of evaporation and heterogeneous reactions involved in the oxide layer removal process are corrected based on the fact that the diffusion rate of (BO)(n) in the liquid oxide layer equals to its consumption rate at the oxide-air interface. To evaluate the accuracy of the model, the obtained results for ignition time are compared with experimental data, showing reasonable consistency between them. The model is then applied to investigate the ignition characteristics of boron agglomerates. Parameters, such as initial average pore diameter, oxide layer thicknesses, initial particle diameter, O(2) concentration, H(2)O concentration, and environmental pressure, are studied for their effects on the ignition time. In summary, the boron ignition model established in this study is a powerful tool to investigate the ignition mechanisms and characteristics of boron agglomerates. It can be further coupled with flow analysis for the detailed simulation of turbulent combustion in ramjet combustors. American Chemical Society 2023-05-17 /pmc/articles/PMC10233822/ /pubmed/37273627 http://dx.doi.org/10.1021/acsomega.3c00772 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Duan, Lian Xia, Zhixun Chen, Binbin Ma, Likun Feng, Yunchao Zhang, Jiarui Hu, Jianxin Zero-Dimensional Ignition Model of Boron Agglomerates |
title | Zero-Dimensional
Ignition Model of Boron Agglomerates |
title_full | Zero-Dimensional
Ignition Model of Boron Agglomerates |
title_fullStr | Zero-Dimensional
Ignition Model of Boron Agglomerates |
title_full_unstemmed | Zero-Dimensional
Ignition Model of Boron Agglomerates |
title_short | Zero-Dimensional
Ignition Model of Boron Agglomerates |
title_sort | zero-dimensional
ignition model of boron agglomerates |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233822/ https://www.ncbi.nlm.nih.gov/pubmed/37273627 http://dx.doi.org/10.1021/acsomega.3c00772 |
work_keys_str_mv | AT duanlian zerodimensionalignitionmodelofboronagglomerates AT xiazhixun zerodimensionalignitionmodelofboronagglomerates AT chenbinbin zerodimensionalignitionmodelofboronagglomerates AT malikun zerodimensionalignitionmodelofboronagglomerates AT fengyunchao zerodimensionalignitionmodelofboronagglomerates AT zhangjiarui zerodimensionalignitionmodelofboronagglomerates AT hujianxin zerodimensionalignitionmodelofboronagglomerates |