Cargando…
Assessing abnormal corneal endothelial cells from in vivo confocal microscopy images using a fully automated deep learning system
BACKGROUND: The goal of this study is to develop a fully automated segmentation and morphometric parameter estimation system for assessing abnormal corneal endothelial cells (CECs) from LASER in vivo confocal microscopy (IVCM) images. METHODS: First, we developed a fully automated deep learning syst...
Autores principales: | Qu, Jinghao, Qin, Xiaoran, Peng, Rongmei, Xiao, Gege, Gu, Shaofeng, Wang, Haikun, Hong, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233875/ https://www.ncbi.nlm.nih.gov/pubmed/37259153 http://dx.doi.org/10.1186/s40662-023-00340-7 |
Ejemplares similares
-
Fully automatic evaluation of the corneal endothelium from in vivo confocal microscopy
por: Selig, Bettina, et al.
Publicado: (2015) -
Severe Corneal Edema Increases ECL From Grafts After DSAEK—Corneal Edema and ECL After DSAEK
por: Gu, Shaofeng, et al.
Publicado: (2022) -
A deep transfer learning framework for the automated assessment of corneal inflammation on in vivo confocal microscopy images
por: Xu, Fan, et al.
Publicado: (2021) -
Corneal confocal microscopy in the evaluation of immune-related motor neuron disease syndrome
por: Jiao, Lin, et al.
Publicado: (2022) -
A Deep Learning Model for Automated Sub-Basal Corneal Nerve Segmentation and Evaluation Using In Vivo Confocal Microscopy
por: Wei, Shanshan, et al.
Publicado: (2020)