Cargando…

Multi-step biosynthesis of the biodegradable polyester monomer 2-pyrone-4,6-dicarboxylic acid from glucose

BACKGROUND: 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industr...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Dan, Wu, Fengli, Peng, Yanfeng, Qazi, Muneer Ahmed, Li, Ruosong, Wang, Yongzhong, Wang, Qinhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10233912/
https://www.ncbi.nlm.nih.gov/pubmed/37264438
http://dx.doi.org/10.1186/s13068-023-02350-y
Descripción
Sumario:BACKGROUND: 2-Pyrone-4,6-dicarboxylic acid (PDC), a chemically stable pseudoaromatic dicarboxylic acid, represents a promising building block for the manufacture of biodegradable polyesters. Microbial production of PDC has been extensively investigated, but low titers and yields have limited industrial applications. RESULTS: In this study, a multi-step biosynthesis strategy for the microbial production of PDC was demonstrated using engineered Escherichia coli whole-cell biocatalysts. The PDC biosynthetic pathway was first divided into three synthetic modules, namely the 3-dehydroshikimic acid (DHS) module, the protocatechuic acid (PCA) module and the PDC module. Several effective enzymes, including 3-dehydroshikimate dehydratase for the PCA module as well as protocatechuate 4,5-dioxygenase and 4-carboxy-2-hydroxymuconate-6-semialdehyde dehydrogenase for the PDC module were isolated and characterized. Then, the highly efficient whole-cell bioconversion systems for producing PCA and PDC were constructed and optimized, respectively. Finally, the efficient multi-step biosynthesis of PDC from glucose was achieved by smoothly integrating the above three biosynthetic modules, resulting in a final titer of 49.18 g/L with an overall 27.2% molar yield, which represented the highest titer for PDC production from glucose reported to date. CONCLUSIONS: This study lays the foundation for the microbial production of PDC, including one-step de novo biosynthesis from glucose as well as the microbial transformation of monoaromatics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13068-023-02350-y.