Cargando…
Predicting 30-day readmission following total knee arthroplasty using machine learning and clinical expertise applied to clinical administrative and research registry data in an Australian cohort
BACKGROUND: Thirty-day readmission is an increasingly important problem for total knee arthroplasty (TKA) patients. The aim of this study was to develop a risk prediction model using machine learning and clinical insight for 30-day readmission in primary TKA patients. METHOD: Data used to train and...
Autores principales: | Gould, Daniel J., Bailey, James A., Spelman, Tim, Bunzli, Samantha, Dowsey, Michelle M., Choong, Peter F. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234041/ https://www.ncbi.nlm.nih.gov/pubmed/37259173 http://dx.doi.org/10.1186/s42836-023-00186-3 |
Ejemplares similares
-
Established and Novel Risk Factors for 30-Day Readmission Following Total Knee Arthroplasty: A Modified Delphi and Focus Group Study to Identify Clinically Important Predictors
por: Gould, Daniel, et al.
Publicado: (2023) -
Patient-Related Risk Factors for Unplanned 30-Day Hospital Readmission Following Primary and Revision Total Knee Arthroplasty: A Systematic Review and Meta-Analysis
por: Gould, Daniel, et al.
Publicado: (2021) -
Patient-related risk factors for unplanned 30-day readmission following total knee arthroplasty: a protocol for a systematic review and meta-analysis
por: Gould, Daniel, et al.
Publicado: (2019) -
Arthroplasty information on the internet: quality or quantity?
por: Davaris, Myles T., et al.
Publicado: (2020) -
Patients’ Views on AI for Risk Prediction in Shared Decision-Making for Knee Replacement Surgery: Qualitative Interview Study
por: Gould, Daniel J, et al.
Publicado: (2023)