Cargando…
Whole-genome analysis of recombinant inbred rice lines reveals a quantitative trait locus on chromosome 3 with genotype-by-environment interaction effects
Elucidating genotype-by-environment interactions is fundamental for understanding the interplay between genetic and environmental factors that shape complex traits in crops. Genotype-by-environment interactions are of practical importance, as they determine the performance of cultivars grown in diff...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234396/ https://www.ncbi.nlm.nih.gov/pubmed/37052949 http://dx.doi.org/10.1093/g3journal/jkad082 |
Sumario: | Elucidating genotype-by-environment interactions is fundamental for understanding the interplay between genetic and environmental factors that shape complex traits in crops. Genotype-by-environment interactions are of practical importance, as they determine the performance of cultivars grown in different environments, prompting the need for an efficient approach for evaluating genotype-by-environment interactions. Here, we describe a method for genotype-by-environment detection that involves comparing linear mixed models. This method successfully detected genotype-by-environment interactions in rice (Oryza sativa) recombinant inbred lines grown at 3 locations. We identified a quantitative trait locus (QTL) on chromosome 3 that was associated with heading date, grain number, and leaf length. The effect of this QTL on plant growth–related traits varied with environmental conditions, indicating the presence of genotype-by-environment interactions. Therefore, our method enables a powerful genotype-by-environment detection pipeline that should facilitate the production of high-yielding crops in a given environment. |
---|