Cargando…
Species independence of eye lens dimensions in teleosts and elasmobranchs
The vertebrate eye lens grows incrementally, adding layers of elongated, tightly packed lens fiber cells at the outer margin of the lens. With subsequent growth, previously-deposited fiber cells degrade, leaving a region of fully denucleated and organelle-free cells which are responsible for the hig...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234530/ https://www.ncbi.nlm.nih.gov/pubmed/37262043 http://dx.doi.org/10.1371/journal.pone.0286388 |
Sumario: | The vertebrate eye lens grows incrementally, adding layers of elongated, tightly packed lens fiber cells at the outer margin of the lens. With subsequent growth, previously-deposited fiber cells degrade, leaving a region of fully denucleated and organelle-free cells which are responsible for the high transparency and low light scattering characteristics of the lens. The objective of this study was to determine if the horizon separating the gelatinous outer cortex of the lens from its hardened interior occurred at a consistent location within the lens of several teleost and elasmobranch fish species, and could be linked to fiber cell morphology or function. A fixed ratio of 0.69±0.01 of hardened eye lens diameter (HD) to overall eye lens diameter (LD) was observed in a broad size range of Atlantic cod (Gadus morhua), haddock (Melanogrammus aeglefinus), thorny skate (Amblyraja radiata) and round ray (Rajella fyllae). The location of the hardened lens horizon was similar to that reported for optical plasticity and spherical aberration, but not that of fiber cell denucleation, suggesting that fiber cell dehydration continues after the loss of internal organelles. Our findings support a previous suggestion that the maintenance of optical quality during fish eye lens growth requires a precisely-fixed HD:LD ratio, while the ubiquity of a fixed ratio across fish taxa may suggest that many fish species possess a common refractive index profile. The linear relationship between HD and fish length should allow fish length to be backcalculated from the diameter of the isolated lens core, thus aiding research using isotope ratios of lens laminae or inner cores to reconstruct early life history events. |
---|