Cargando…
Disproportionate impacts of COVID-19 in a large US city
COVID-19 has disproportionately impacted individuals depending on where they live and work, and based on their race, ethnicity, and socioeconomic status. Studies have documented catastrophic disparities at critical points throughout the pandemic, but have not yet systematically tracked their severit...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234557/ https://www.ncbi.nlm.nih.gov/pubmed/37262052 http://dx.doi.org/10.1371/journal.pcbi.1011149 |
_version_ | 1785052518265389056 |
---|---|
author | Fox, Spencer J. Javan, Emily Pasco, Remy Gibson, Graham C. Betke, Briana Herrera-Diestra, José L. Woody, Spencer Pierce, Kelly Johnson, Kaitlyn E. Johnson-León, Maureen Lachmann, Michael Meyers, Lauren Ancel |
author_facet | Fox, Spencer J. Javan, Emily Pasco, Remy Gibson, Graham C. Betke, Briana Herrera-Diestra, José L. Woody, Spencer Pierce, Kelly Johnson, Kaitlyn E. Johnson-León, Maureen Lachmann, Michael Meyers, Lauren Ancel |
author_sort | Fox, Spencer J. |
collection | PubMed |
description | COVID-19 has disproportionately impacted individuals depending on where they live and work, and based on their race, ethnicity, and socioeconomic status. Studies have documented catastrophic disparities at critical points throughout the pandemic, but have not yet systematically tracked their severity through time. Using anonymized hospitalization data from March 11, 2020 to June 1, 2021 and fine-grain infection hospitalization rates, we estimate the time-varying burden of COVID-19 by age group and ZIP code in Austin, Texas. During this 15-month period, we estimate an overall 23.7% (95% CrI: 22.5–24.8%) infection rate and 29.4% (95% CrI: 28.0–31.0%) case reporting rate. Individuals over 65 were less likely to be infected than younger age groups (11.2% [95% CrI: 10.3–12.0%] vs 25.1% [95% CrI: 23.7–26.4%]), but more likely to be hospitalized (1,965 per 100,000 vs 376 per 100,000) and have their infections reported (53% [95% CrI: 49–57%] vs 28% [95% CrI: 27–30%]). We used a mixed effect poisson regression model to estimate disparities in infection and reporting rates as a function of social vulnerability. We compared ZIP codes ranking in the 75th percentile of vulnerability to those in the 25th percentile, and found that the more vulnerable communities had 2.5 (95% CrI: 2.0–3.0) times the infection rate and only 70% (95% CrI: 60%-82%) the reporting rate compared to the less vulnerable communities. Inequality persisted but declined significantly over the 15-month study period. Our results suggest that further public health efforts are needed to mitigate local COVID-19 disparities and that the CDC’s social vulnerability index may serve as a reliable predictor of risk on a local scale when surveillance data are limited. |
format | Online Article Text |
id | pubmed-10234557 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-102345572023-06-02 Disproportionate impacts of COVID-19 in a large US city Fox, Spencer J. Javan, Emily Pasco, Remy Gibson, Graham C. Betke, Briana Herrera-Diestra, José L. Woody, Spencer Pierce, Kelly Johnson, Kaitlyn E. Johnson-León, Maureen Lachmann, Michael Meyers, Lauren Ancel PLoS Comput Biol Research Article COVID-19 has disproportionately impacted individuals depending on where they live and work, and based on their race, ethnicity, and socioeconomic status. Studies have documented catastrophic disparities at critical points throughout the pandemic, but have not yet systematically tracked their severity through time. Using anonymized hospitalization data from March 11, 2020 to June 1, 2021 and fine-grain infection hospitalization rates, we estimate the time-varying burden of COVID-19 by age group and ZIP code in Austin, Texas. During this 15-month period, we estimate an overall 23.7% (95% CrI: 22.5–24.8%) infection rate and 29.4% (95% CrI: 28.0–31.0%) case reporting rate. Individuals over 65 were less likely to be infected than younger age groups (11.2% [95% CrI: 10.3–12.0%] vs 25.1% [95% CrI: 23.7–26.4%]), but more likely to be hospitalized (1,965 per 100,000 vs 376 per 100,000) and have their infections reported (53% [95% CrI: 49–57%] vs 28% [95% CrI: 27–30%]). We used a mixed effect poisson regression model to estimate disparities in infection and reporting rates as a function of social vulnerability. We compared ZIP codes ranking in the 75th percentile of vulnerability to those in the 25th percentile, and found that the more vulnerable communities had 2.5 (95% CrI: 2.0–3.0) times the infection rate and only 70% (95% CrI: 60%-82%) the reporting rate compared to the less vulnerable communities. Inequality persisted but declined significantly over the 15-month study period. Our results suggest that further public health efforts are needed to mitigate local COVID-19 disparities and that the CDC’s social vulnerability index may serve as a reliable predictor of risk on a local scale when surveillance data are limited. Public Library of Science 2023-06-01 /pmc/articles/PMC10234557/ /pubmed/37262052 http://dx.doi.org/10.1371/journal.pcbi.1011149 Text en https://creativecommons.org/publicdomain/zero/1.0/This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 (https://creativecommons.org/publicdomain/zero/1.0/) public domain dedication. |
spellingShingle | Research Article Fox, Spencer J. Javan, Emily Pasco, Remy Gibson, Graham C. Betke, Briana Herrera-Diestra, José L. Woody, Spencer Pierce, Kelly Johnson, Kaitlyn E. Johnson-León, Maureen Lachmann, Michael Meyers, Lauren Ancel Disproportionate impacts of COVID-19 in a large US city |
title | Disproportionate impacts of COVID-19 in a large US city |
title_full | Disproportionate impacts of COVID-19 in a large US city |
title_fullStr | Disproportionate impacts of COVID-19 in a large US city |
title_full_unstemmed | Disproportionate impacts of COVID-19 in a large US city |
title_short | Disproportionate impacts of COVID-19 in a large US city |
title_sort | disproportionate impacts of covid-19 in a large us city |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234557/ https://www.ncbi.nlm.nih.gov/pubmed/37262052 http://dx.doi.org/10.1371/journal.pcbi.1011149 |
work_keys_str_mv | AT foxspencerj disproportionateimpactsofcovid19inalargeuscity AT javanemily disproportionateimpactsofcovid19inalargeuscity AT pascoremy disproportionateimpactsofcovid19inalargeuscity AT gibsongrahamc disproportionateimpactsofcovid19inalargeuscity AT betkebriana disproportionateimpactsofcovid19inalargeuscity AT herreradiestrajosel disproportionateimpactsofcovid19inalargeuscity AT woodyspencer disproportionateimpactsofcovid19inalargeuscity AT piercekelly disproportionateimpactsofcovid19inalargeuscity AT johnsonkaitlyne disproportionateimpactsofcovid19inalargeuscity AT johnsonleonmaureen disproportionateimpactsofcovid19inalargeuscity AT lachmannmichael disproportionateimpactsofcovid19inalargeuscity AT meyerslaurenancel disproportionateimpactsofcovid19inalargeuscity |