Cargando…

Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta

Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a...

Descripción completa

Detalles Bibliográficos
Autores principales: Noecker, Cecilia, Sanchez, Juan, Bisanz, Jordan E., Escalante, Veronica, Alexander, Margaret, Trepka, Kai, Heinken, Almut, Liu, Yuanyuan, Dodd, Dylan, Thiele, Ines, DeFelice, Brian C., Turnbaugh, Peter J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234575/
https://www.ncbi.nlm.nih.gov/pubmed/37205710
http://dx.doi.org/10.1371/journal.pbio.3002125
_version_ 1785052523161190400
author Noecker, Cecilia
Sanchez, Juan
Bisanz, Jordan E.
Escalante, Veronica
Alexander, Margaret
Trepka, Kai
Heinken, Almut
Liu, Yuanyuan
Dodd, Dylan
Thiele, Ines
DeFelice, Brian C.
Turnbaugh, Peter J.
author_facet Noecker, Cecilia
Sanchez, Juan
Bisanz, Jordan E.
Escalante, Veronica
Alexander, Margaret
Trepka, Kai
Heinken, Almut
Liu, Yuanyuan
Dodd, Dylan
Thiele, Ines
DeFelice, Brian C.
Turnbaugh, Peter J.
author_sort Noecker, Cecilia
collection PubMed
description Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium.
format Online
Article
Text
id pubmed-10234575
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-102345752023-06-02 Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta Noecker, Cecilia Sanchez, Juan Bisanz, Jordan E. Escalante, Veronica Alexander, Margaret Trepka, Kai Heinken, Almut Liu, Yuanyuan Dodd, Dylan Thiele, Ines DeFelice, Brian C. Turnbaugh, Peter J. PLoS Biol Methods and Resources Human gut bacteria perform diverse metabolic functions with consequences for host health. The prevalent and disease-linked Actinobacterium Eggerthella lenta performs several unusual chemical transformations, but it does not metabolize sugars and its core growth strategy remains unclear. To obtain a comprehensive view of the metabolic network of E. lenta, we generated several complementary resources: defined culture media, metabolomics profiles of strain isolates, and a curated genome-scale metabolic reconstruction. Stable isotope-resolved metabolomics revealed that E. lenta uses acetate as a key carbon source while catabolizing arginine to generate ATP, traits which could be recapitulated in silico by our updated metabolic model. We compared these in vitro findings with metabolite shifts observed in E. lenta-colonized gnotobiotic mice, identifying shared signatures across environments and highlighting catabolism of the host signaling metabolite agmatine as an alternative energy pathway. Together, our results elucidate a distinctive metabolic niche filled by E. lenta in the gut ecosystem. Our culture media formulations, atlas of metabolomics data, and genome-scale metabolic reconstructions form a freely available collection of resources to support further study of the biology of this prevalent gut bacterium. Public Library of Science 2023-05-19 /pmc/articles/PMC10234575/ /pubmed/37205710 http://dx.doi.org/10.1371/journal.pbio.3002125 Text en © 2023 Noecker et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Methods and Resources
Noecker, Cecilia
Sanchez, Juan
Bisanz, Jordan E.
Escalante, Veronica
Alexander, Margaret
Trepka, Kai
Heinken, Almut
Liu, Yuanyuan
Dodd, Dylan
Thiele, Ines
DeFelice, Brian C.
Turnbaugh, Peter J.
Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta
title Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta
title_full Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta
title_fullStr Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta
title_full_unstemmed Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta
title_short Systems biology elucidates the distinctive metabolic niche filled by the human gut microbe Eggerthella lenta
title_sort systems biology elucidates the distinctive metabolic niche filled by the human gut microbe eggerthella lenta
topic Methods and Resources
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234575/
https://www.ncbi.nlm.nih.gov/pubmed/37205710
http://dx.doi.org/10.1371/journal.pbio.3002125
work_keys_str_mv AT noeckercecilia systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT sanchezjuan systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT bisanzjordane systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT escalanteveronica systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT alexandermargaret systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT trepkakai systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT heinkenalmut systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT liuyuanyuan systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT dodddylan systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT thieleines systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT defelicebrianc systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta
AT turnbaughpeterj systemsbiologyelucidatesthedistinctivemetabolicnichefilledbythehumangutmicrobeeggerthellalenta