Cargando…
Limitations of principal components in quantitative genetic association models for human studies
Principal Component Analysis (PCA) and the Linear Mixed-effects Model (LMM), sometimes in combination, are the most common genetic association models. Previous PCA-LMM comparisons give mixed results, unclear guidance, and have several limitations, including not varying the number of principal compon...
Autores principales: | Yao, Yiqi, Ochoa, Alejandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10234632/ https://www.ncbi.nlm.nih.gov/pubmed/37140344 http://dx.doi.org/10.7554/eLife.79238 |
Ejemplares similares
-
Genetic components of human pain sensitivity: a protocol for a genome-wide association study of experimental pain in healthy volunteers
por: Schmid, Annina B, et al.
Publicado: (2019) -
Correcting Principal Component Maps for Effects of Spatial Autocorrelation in Population Genetic Data
por: Frichot, Eric, et al.
Publicado: (2012) -
Principal component analysis reveals the 1000 Genomes Project does not sufficiently cover the human genetic diversity in Asia
por: Lu, Dongsheng, et al.
Publicado: (2013) -
Incorporating Prior Knowledge of Principal Components in Genomic Prediction
por: Hosseini-Vardanjani, Sayed M., et al.
Publicado: (2018) -
Self-limiting population genetic control with sex-linked genome editors
por: Burt, Austin, et al.
Publicado: (2018)