Cargando…
File-level malware detection using byte streams
As more documents appear on the Internet, it becomes important to detect malware within the documents. Malware of non-executables might be more dangerous because people usually open them without worrying about inherent danger. Recently, deep learning models are used to analyze byte streams of the no...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235077/ https://www.ncbi.nlm.nih.gov/pubmed/37264210 http://dx.doi.org/10.1038/s41598-023-36088-2 |
Sumario: | As more documents appear on the Internet, it becomes important to detect malware within the documents. Malware of non-executables might be more dangerous because people usually open them without worrying about inherent danger. Recently, deep learning models are used to analyze byte streams of the non-executables for malware detection. Although they have shown successful results, they are commonly designed for stream-level detection, but not for file-level detection. In this paper, we propose a new method that aggregates the stream-level results to get file-level results for malware detection. We demonstrate its effectiveness by experimental results with our annotated dataset, and show that it gives performance gain of 3.37–5.89% of F1 scores. |
---|