Cargando…
FLONE: fully Lorentz network embedding for inferring novel drug targets
MOTIVATION: To predict drug targets, graph-based machine-learning methods have been widely used to capture the relationships between drug, target and disease entities in drug–disease–target (DDT) networks. However, many methods cannot explicitly consider disease types at inference time and so will p...
Autores principales: | Yue, Yang, McDonald, David, Hao, Luoying, Lei, Huangshu, Butler, Mark S, He, Shan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235194/ https://www.ncbi.nlm.nih.gov/pubmed/37275772 http://dx.doi.org/10.1093/bioadv/vbad066 |
Ejemplares similares
-
Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning
por: Yue, Yang, et al.
Publicado: (2022) -
Lorentz Group Equivariant Autoencoders
por: Hao, Zichun, et al.
Publicado: (2022) -
Lorentz group equivariant autoencoders
por: Hao, Zichun, et al.
Publicado: (2023) -
Linear representations of the Lorentz group
por: Najmark, Mark Aronovich, et al.
Publicado: (1964) -
Structural inference embedded adversarial networks for scene parsing
por: Wang, ZeYu, et al.
Publicado: (2018)