Cargando…
Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans
In the clinic, it is difficult to distinguish the malignancy and aggressiveness of solid pulmonary nodules (PNs). Incorrect assessments may lead to delayed diagnosis and an increased risk of complications. We developed and validated a deep learning-based model for the prediction of malignancy as wel...
Autores principales: | Mu, Junhao, Kuang, Kaiming, Ao, Min, Li, Weiyi, Dai, Haiyun, Ouyang, Zubin, Li, Jingyu, Huang, Jing, Guo, Shuliang, Yang, Jiancheng, Yang, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235703/ https://www.ncbi.nlm.nih.gov/pubmed/37275359 http://dx.doi.org/10.3389/fmed.2023.1145846 |
Ejemplares similares
-
Advances in diagnosis and prediction for aggression of pure solid T1 lung cancer
por: Mu, Junhao, et al.
Publicado: (2023) -
Deep learning parametric response mapping from inspiratory chest CT scans: a new approach for small airway disease screening
por: Chen, Bin, et al.
Publicado: (2023) -
Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet
por: Jin, Liang, et al.
Publicado: (2020) -
Highly accurate model for prediction of lung nodule malignancy with CT scans
por: Causey, Jason L., et al.
Publicado: (2018) -
A classification of pulmonary nodules by CT scan
por: Bellomi, M
Publicado: (2012)