Cargando…
FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC
Background: Endometrial cancer (UCEC) is a highly heterogeneous gynecologic malignancy that exhibits variable prognostic outcomes and responses to immunotherapy. The Familial sequence similarity (FAM) gene family is known to contribute to the pathogenesis of various malignancies, but the extent of t...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235772/ https://www.ncbi.nlm.nih.gov/pubmed/37275958 http://dx.doi.org/10.3389/fmolb.2023.1200335 |
_version_ | 1785052762669580288 |
---|---|
author | Chi, Hao Gao, Xinrui Xia, Zhijia Yu, Wanying Yin, Xisheng Pan, Yifan Peng, Gaoge Mao, Xinrui Teichmann, Alexander Tobias Zhang, Jing Tran, Lisa Jia Jiang, Tianxiao Liu, Yunfei Yang, Guanhu Wang, Qin |
author_facet | Chi, Hao Gao, Xinrui Xia, Zhijia Yu, Wanying Yin, Xisheng Pan, Yifan Peng, Gaoge Mao, Xinrui Teichmann, Alexander Tobias Zhang, Jing Tran, Lisa Jia Jiang, Tianxiao Liu, Yunfei Yang, Guanhu Wang, Qin |
author_sort | Chi, Hao |
collection | PubMed |
description | Background: Endometrial cancer (UCEC) is a highly heterogeneous gynecologic malignancy that exhibits variable prognostic outcomes and responses to immunotherapy. The Familial sequence similarity (FAM) gene family is known to contribute to the pathogenesis of various malignancies, but the extent of their involvement in UCEC has not been systematically studied. This investigation aimed to develop a robust risk profile based on FAM family genes (FFGs) to predict the prognosis and suitability for immunotherapy in UCEC patients. Methods: Using the TCGA-UCEC cohort from The Cancer Genome Atlas (TCGA) database, we obtained expression profiles of FFGs from 552 UCEC and 35 normal samples, and analyzed the expression patterns and prognostic relevance of 363 FAM family genes. The UCEC samples were randomly divided into training and test sets (1:1), and univariate Cox regression analysis and Lasso Cox regression analysis were conducted to identify the differentially expressed genes (FAM13C, FAM110B, and FAM72A) that were significantly associated with prognosis. A prognostic risk scoring system was constructed based on these three gene characteristics using multivariate Cox proportional risk regression. The clinical potential and immune status of FFGs were analyzed using CiberSort, SSGSEA, and tumor immune dysfunction and rejection (TIDE) algorithms. qRT-PCR and IHC for detecting the expression levels of 3-FFGs. Results: Three FFGs, namely, FAM13C, FAM110B, and FAM72A, were identified as strongly associated with the prognosis of UCEC and effective predictors of UCEC prognosis. Multivariate analysis demonstrated that the developed model was an independent predictor of UCEC, and that patients in the low-risk group had better overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores exhibited good prognostic power. Patients in the low-risk group exhibited a higher tumor mutational load (TMB) and were more likely to benefit from immunotherapy. Conclusion: This study successfully developed and validated novel biomarkers based on FFGs for predicting the prognosis and immune status of UCEC patients. The identified FFGs can accurately assess the prognosis of UCEC patients and facilitate the identification of specific subgroups of patients who may benefit from personalized treatment with immunotherapy and chemotherapy. |
format | Online Article Text |
id | pubmed-10235772 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102357722023-06-03 FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC Chi, Hao Gao, Xinrui Xia, Zhijia Yu, Wanying Yin, Xisheng Pan, Yifan Peng, Gaoge Mao, Xinrui Teichmann, Alexander Tobias Zhang, Jing Tran, Lisa Jia Jiang, Tianxiao Liu, Yunfei Yang, Guanhu Wang, Qin Front Mol Biosci Molecular Biosciences Background: Endometrial cancer (UCEC) is a highly heterogeneous gynecologic malignancy that exhibits variable prognostic outcomes and responses to immunotherapy. The Familial sequence similarity (FAM) gene family is known to contribute to the pathogenesis of various malignancies, but the extent of their involvement in UCEC has not been systematically studied. This investigation aimed to develop a robust risk profile based on FAM family genes (FFGs) to predict the prognosis and suitability for immunotherapy in UCEC patients. Methods: Using the TCGA-UCEC cohort from The Cancer Genome Atlas (TCGA) database, we obtained expression profiles of FFGs from 552 UCEC and 35 normal samples, and analyzed the expression patterns and prognostic relevance of 363 FAM family genes. The UCEC samples were randomly divided into training and test sets (1:1), and univariate Cox regression analysis and Lasso Cox regression analysis were conducted to identify the differentially expressed genes (FAM13C, FAM110B, and FAM72A) that were significantly associated with prognosis. A prognostic risk scoring system was constructed based on these three gene characteristics using multivariate Cox proportional risk regression. The clinical potential and immune status of FFGs were analyzed using CiberSort, SSGSEA, and tumor immune dysfunction and rejection (TIDE) algorithms. qRT-PCR and IHC for detecting the expression levels of 3-FFGs. Results: Three FFGs, namely, FAM13C, FAM110B, and FAM72A, were identified as strongly associated with the prognosis of UCEC and effective predictors of UCEC prognosis. Multivariate analysis demonstrated that the developed model was an independent predictor of UCEC, and that patients in the low-risk group had better overall survival than those in the high-risk group. The nomogram constructed from clinical characteristics and risk scores exhibited good prognostic power. Patients in the low-risk group exhibited a higher tumor mutational load (TMB) and were more likely to benefit from immunotherapy. Conclusion: This study successfully developed and validated novel biomarkers based on FFGs for predicting the prognosis and immune status of UCEC patients. The identified FFGs can accurately assess the prognosis of UCEC patients and facilitate the identification of specific subgroups of patients who may benefit from personalized treatment with immunotherapy and chemotherapy. Frontiers Media S.A. 2023-05-19 /pmc/articles/PMC10235772/ /pubmed/37275958 http://dx.doi.org/10.3389/fmolb.2023.1200335 Text en Copyright © 2023 Chi, Gao, Xia, Yu, Yin, Pan, Peng, Mao, Teichmann, Zhang, Tran, Jiang, Liu, Yang and Wang. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Molecular Biosciences Chi, Hao Gao, Xinrui Xia, Zhijia Yu, Wanying Yin, Xisheng Pan, Yifan Peng, Gaoge Mao, Xinrui Teichmann, Alexander Tobias Zhang, Jing Tran, Lisa Jia Jiang, Tianxiao Liu, Yunfei Yang, Guanhu Wang, Qin FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC |
title | FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC |
title_full | FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC |
title_fullStr | FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC |
title_full_unstemmed | FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC |
title_short | FAM family gene prediction model reveals heterogeneity, stemness and immune microenvironment of UCEC |
title_sort | fam family gene prediction model reveals heterogeneity, stemness and immune microenvironment of ucec |
topic | Molecular Biosciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235772/ https://www.ncbi.nlm.nih.gov/pubmed/37275958 http://dx.doi.org/10.3389/fmolb.2023.1200335 |
work_keys_str_mv | AT chihao famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT gaoxinrui famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT xiazhijia famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT yuwanying famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT yinxisheng famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT panyifan famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT penggaoge famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT maoxinrui famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT teichmannalexandertobias famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT zhangjing famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT tranlisajia famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT jiangtianxiao famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT liuyunfei famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT yangguanhu famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec AT wangqin famfamilygenepredictionmodelrevealsheterogeneitystemnessandimmunemicroenvironmentofucec |