Cargando…
Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications
INTRODUCTION: Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate prediction...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235786/ https://www.ncbi.nlm.nih.gov/pubmed/37274341 http://dx.doi.org/10.3389/fendo.2023.1130139 |
_version_ | 1785052766373150720 |
---|---|
author | Mennickent, Daniela Rodríguez, Andrés Opazo, Ma. Cecilia Riedel, Claudia A. Castro, Erica Eriz-Salinas, Alma Appel-Rubio, Javiera Aguayo, Claudio Damiano, Alicia E. Guzmán-Gutiérrez, Enrique Araya, Juan |
author_facet | Mennickent, Daniela Rodríguez, Andrés Opazo, Ma. Cecilia Riedel, Claudia A. Castro, Erica Eriz-Salinas, Alma Appel-Rubio, Javiera Aguayo, Claudio Damiano, Alicia E. Guzmán-Gutiérrez, Enrique Araya, Juan |
author_sort | Mennickent, Daniela |
collection | PubMed |
description | INTRODUCTION: Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. AIM: To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. METHODOLOGY: Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. CURRENT STATE: ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. FUTURE CHALLENGES: To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. CONCLUSION: The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology. |
format | Online Article Text |
id | pubmed-10235786 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102357862023-06-03 Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications Mennickent, Daniela Rodríguez, Andrés Opazo, Ma. Cecilia Riedel, Claudia A. Castro, Erica Eriz-Salinas, Alma Appel-Rubio, Javiera Aguayo, Claudio Damiano, Alicia E. Guzmán-Gutiérrez, Enrique Araya, Juan Front Endocrinol (Lausanne) Endocrinology INTRODUCTION: Machine learning (ML) corresponds to a wide variety of methods that use mathematics, statistics and computational science to learn from multiple variables simultaneously. By means of pattern recognition, ML methods are able to find hidden correlations and accomplish accurate predictions regarding different conditions. ML has been successfully used to solve varied problems in different areas of science, such as psychology, economics, biology and chemistry. Therefore, we wondered how far it has penetrated into the field of obstetrics and gynecology. AIM: To describe the state of art regarding the use of ML in the context of pregnancy diseases and complications. METHODOLOGY: Publications were searched in PubMed, Web of Science and Google Scholar. Seven subjects of interest were considered: gestational diabetes mellitus, preeclampsia, perinatal death, spontaneous abortion, preterm birth, cesarean section, and fetal malformations. CURRENT STATE: ML has been widely applied in all the included subjects. Its uses are varied, the most common being the prediction of perinatal disorders. Other ML applications include (but are not restricted to) biomarker discovery, risk estimation, correlation assessment, pharmacological treatment prediction, drug screening, data acquisition and data extraction. Most of the reviewed articles were published in the last five years. The most employed ML methods in the field are non-linear. Except for logistic regression, linear methods are rarely used. FUTURE CHALLENGES: To improve data recording, storage and update in medical and research settings from different realities. To develop more accurate and understandable ML models using data from cutting-edge instruments. To carry out validation and impact analysis studies of currently existing high-accuracy ML models. CONCLUSION: The use of ML in pregnancy diseases and complications is quite recent, and has increased over the last few years. The applications are varied and point not only to the diagnosis, but also to the management, treatment, and pathophysiological understanding of perinatal alterations. Facing the challenges that come with working with different types of data, the handling of increasingly large amounts of information, the development of emerging technologies, and the need of translational studies, it is expected that the use of ML continue growing in the field of obstetrics and gynecology. Frontiers Media S.A. 2023-05-19 /pmc/articles/PMC10235786/ /pubmed/37274341 http://dx.doi.org/10.3389/fendo.2023.1130139 Text en Copyright © 2023 Mennickent, Rodríguez, Opazo, Riedel, Castro, Eriz-Salinas, Appel-Rubio, Aguayo, Damiano, Guzmán-Gutiérrez and Araya https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Mennickent, Daniela Rodríguez, Andrés Opazo, Ma. Cecilia Riedel, Claudia A. Castro, Erica Eriz-Salinas, Alma Appel-Rubio, Javiera Aguayo, Claudio Damiano, Alicia E. Guzmán-Gutiérrez, Enrique Araya, Juan Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
title | Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
title_full | Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
title_fullStr | Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
title_full_unstemmed | Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
title_short | Machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
title_sort | machine learning applied in maternal and fetal health: a narrative review focused on pregnancy diseases and complications |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10235786/ https://www.ncbi.nlm.nih.gov/pubmed/37274341 http://dx.doi.org/10.3389/fendo.2023.1130139 |
work_keys_str_mv | AT mennickentdaniela machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT rodriguezandres machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT opazomacecilia machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT riedelclaudiaa machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT castroerica machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT erizsalinasalma machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT appelrubiojaviera machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT aguayoclaudio machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT damianoaliciae machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT guzmangutierrezenrique machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications AT arayajuan machinelearningappliedinmaternalandfetalhealthanarrativereviewfocusedonpregnancydiseasesandcomplications |