Cargando…
Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury
Spinal cord injury (SCI) causes severe neural tissue damage and motor/sensory dysfunction. Since the injured spinal cord tissue has limited self-regeneration ability, several strategies, including cell therapy, drug delivery, and tissue engineering scaffold implantation, have been employed to treat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Whioce Publishing Pte. Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236342/ https://www.ncbi.nlm.nih.gov/pubmed/37273987 http://dx.doi.org/10.18063/ijb.692 |
_version_ | 1785052898214805504 |
---|---|
author | Song, Shiqiang Zhou, Jing Wan, Junming Zhao, Xingchang Li, Kai Yang, Chengliang Zheng, Chuanchuan Wang, Liqiang Tang, Yujin Wang, Chong Liu, Jia |
author_facet | Song, Shiqiang Zhou, Jing Wan, Junming Zhao, Xingchang Li, Kai Yang, Chengliang Zheng, Chuanchuan Wang, Liqiang Tang, Yujin Wang, Chong Liu, Jia |
author_sort | Song, Shiqiang |
collection | PubMed |
description | Spinal cord injury (SCI) causes severe neural tissue damage and motor/sensory dysfunction. Since the injured spinal cord tissue has limited self-regeneration ability, several strategies, including cell therapy, drug delivery, and tissue engineering scaffold implantation, have been employed to treat SCI. However, each of these strategies fails to obtain desirable outcomes due to their respective limitations. In comparison, advanced tissue engineering scaffolds with appropriate topographical features, favorable composition, and sustained drug delivery capability can be employed to recruit endogenous neural stem cells (NSCs), induce neuronal differentiation, and facilitate neuron maturation. This can lead to the regeneration of injured spinal cord tissue and the recovery of motor function. In this study, fiber bundle-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with oxymatrine (OMT) were produced through nearfield direct write electrospinning. The spinal cord extracellular matrix-based hydrogel was then coated with OMT. The physical/chemical properties and in vitro degradation behavior of the composite scaffolds were investigated. The in vitro cell culture results showed that composite scaffolds loaded with OMT promoted the differentiation of NSCs into neurons and inhibited differentiation into astrocytes. The in vivo results showed that the composite scaffolds loaded with OMT recruited NSCs from the host tissue, promoted neuronal differentiation and axon extension at the lesion site, inhibited glial scar formation at/around the lesion site, and improved the recovery of motor function in rats with SCI. To sum up, 3D-printed microfiber-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with OMT are promising biomaterials for the treatment of SCI. |
format | Online Article Text |
id | pubmed-10236342 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Whioce Publishing Pte. Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-102363422023-06-03 Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury Song, Shiqiang Zhou, Jing Wan, Junming Zhao, Xingchang Li, Kai Yang, Chengliang Zheng, Chuanchuan Wang, Liqiang Tang, Yujin Wang, Chong Liu, Jia Int J Bioprint Research Article Spinal cord injury (SCI) causes severe neural tissue damage and motor/sensory dysfunction. Since the injured spinal cord tissue has limited self-regeneration ability, several strategies, including cell therapy, drug delivery, and tissue engineering scaffold implantation, have been employed to treat SCI. However, each of these strategies fails to obtain desirable outcomes due to their respective limitations. In comparison, advanced tissue engineering scaffolds with appropriate topographical features, favorable composition, and sustained drug delivery capability can be employed to recruit endogenous neural stem cells (NSCs), induce neuronal differentiation, and facilitate neuron maturation. This can lead to the regeneration of injured spinal cord tissue and the recovery of motor function. In this study, fiber bundle-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with oxymatrine (OMT) were produced through nearfield direct write electrospinning. The spinal cord extracellular matrix-based hydrogel was then coated with OMT. The physical/chemical properties and in vitro degradation behavior of the composite scaffolds were investigated. The in vitro cell culture results showed that composite scaffolds loaded with OMT promoted the differentiation of NSCs into neurons and inhibited differentiation into astrocytes. The in vivo results showed that the composite scaffolds loaded with OMT recruited NSCs from the host tissue, promoted neuronal differentiation and axon extension at the lesion site, inhibited glial scar formation at/around the lesion site, and improved the recovery of motor function in rats with SCI. To sum up, 3D-printed microfiber-reinforced spinal cord extracellular matrix hydrogel scaffolds loaded with OMT are promising biomaterials for the treatment of SCI. Whioce Publishing Pte. Ltd. 2023-02-22 /pmc/articles/PMC10236342/ /pubmed/37273987 http://dx.doi.org/10.18063/ijb.692 Text en Copyright:© 2023, Song S, Zhou J, Wan J, et al https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License, permitting distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Song, Shiqiang Zhou, Jing Wan, Junming Zhao, Xingchang Li, Kai Yang, Chengliang Zheng, Chuanchuan Wang, Liqiang Tang, Yujin Wang, Chong Liu, Jia Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
title | Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
title_full | Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
title_fullStr | Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
title_full_unstemmed | Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
title_short | Three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
title_sort | three-dimensional printing of microfiber- reinforced hydrogel loaded with oxymatrine for treating spinal cord injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236342/ https://www.ncbi.nlm.nih.gov/pubmed/37273987 http://dx.doi.org/10.18063/ijb.692 |
work_keys_str_mv | AT songshiqiang threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT zhoujing threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT wanjunming threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT zhaoxingchang threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT likai threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT yangchengliang threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT zhengchuanchuan threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT wangliqiang threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT tangyujin threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT wangchong threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury AT liujia threedimensionalprintingofmicrofiberreinforcedhydrogelloadedwithoxymatrinefortreatingspinalcordinjury |