Cargando…
7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellula...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236358/ https://www.ncbi.nlm.nih.gov/pubmed/37275261 http://dx.doi.org/10.1093/pnasnexus/pgad171 |
Sumario: | Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellular interactions and disease. However, high-plex data can be slower and more costly to collect, limiting its applications, especially in clinical settings. We propose a machine learning framework, 7-UP, that can computationally generate in silico 40-plex CODEX at single-cell resolution from a standard 7-plex mIF panel by leveraging cellular morphology. We demonstrate the usefulness of the imputed biomarkers in accurately classifying cell types and predicting patient survival outcomes. Furthermore, 7-UP's imputations generalize well across samples from different clinical sites and cancer types. 7-UP opens the possibility of in silico CODEX, making insights from high-plex mIF more widely available. |
---|