Cargando…

7-UP: Generating in silico CODEX from a small set of immunofluorescence markers

Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellula...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Eric, Trevino, Alexandro E, Wu, Zhenqin, Swanson, Kyle, Kim, Honesty J, D’Angio, H Blaize, Preska, Ryan, Chiou, Aaron E, Charville, Gregory W, Dalerba, Piero, Duvvuri, Umamaheswar, Colevas, Alexander D, Levi, Jelena, Bedi, Nikita, Chang, Serena, Sunwoo, John, Egloff, Ann Marie, Uppaluri, Ravindra, Mayer, Aaron T, Zou, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236358/
https://www.ncbi.nlm.nih.gov/pubmed/37275261
http://dx.doi.org/10.1093/pnasnexus/pgad171
_version_ 1785052901010309120
author Wu, Eric
Trevino, Alexandro E
Wu, Zhenqin
Swanson, Kyle
Kim, Honesty J
D’Angio, H Blaize
Preska, Ryan
Chiou, Aaron E
Charville, Gregory W
Dalerba, Piero
Duvvuri, Umamaheswar
Colevas, Alexander D
Levi, Jelena
Bedi, Nikita
Chang, Serena
Sunwoo, John
Egloff, Ann Marie
Uppaluri, Ravindra
Mayer, Aaron T
Zou, James
author_facet Wu, Eric
Trevino, Alexandro E
Wu, Zhenqin
Swanson, Kyle
Kim, Honesty J
D’Angio, H Blaize
Preska, Ryan
Chiou, Aaron E
Charville, Gregory W
Dalerba, Piero
Duvvuri, Umamaheswar
Colevas, Alexander D
Levi, Jelena
Bedi, Nikita
Chang, Serena
Sunwoo, John
Egloff, Ann Marie
Uppaluri, Ravindra
Mayer, Aaron T
Zou, James
author_sort Wu, Eric
collection PubMed
description Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellular interactions and disease. However, high-plex data can be slower and more costly to collect, limiting its applications, especially in clinical settings. We propose a machine learning framework, 7-UP, that can computationally generate in silico 40-plex CODEX at single-cell resolution from a standard 7-plex mIF panel by leveraging cellular morphology. We demonstrate the usefulness of the imputed biomarkers in accurately classifying cell types and predicting patient survival outcomes. Furthermore, 7-UP's imputations generalize well across samples from different clinical sites and cancer types. 7-UP opens the possibility of in silico CODEX, making insights from high-plex mIF more widely available.
format Online
Article
Text
id pubmed-10236358
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-102363582023-06-03 7-UP: Generating in silico CODEX from a small set of immunofluorescence markers Wu, Eric Trevino, Alexandro E Wu, Zhenqin Swanson, Kyle Kim, Honesty J D’Angio, H Blaize Preska, Ryan Chiou, Aaron E Charville, Gregory W Dalerba, Piero Duvvuri, Umamaheswar Colevas, Alexander D Levi, Jelena Bedi, Nikita Chang, Serena Sunwoo, John Egloff, Ann Marie Uppaluri, Ravindra Mayer, Aaron T Zou, James PNAS Nexus Biological, Health, and Medical Sciences Multiplex immunofluorescence (mIF) assays multiple protein biomarkers on a single tissue section. Recently, high-plex CODEX (co-detection by indexing) systems enable simultaneous imaging of 40+ protein biomarkers, unlocking more detailed molecular phenotyping, leading to richer insights into cellular interactions and disease. However, high-plex data can be slower and more costly to collect, limiting its applications, especially in clinical settings. We propose a machine learning framework, 7-UP, that can computationally generate in silico 40-plex CODEX at single-cell resolution from a standard 7-plex mIF panel by leveraging cellular morphology. We demonstrate the usefulness of the imputed biomarkers in accurately classifying cell types and predicting patient survival outcomes. Furthermore, 7-UP's imputations generalize well across samples from different clinical sites and cancer types. 7-UP opens the possibility of in silico CODEX, making insights from high-plex mIF more widely available. Oxford University Press 2023-05-19 /pmc/articles/PMC10236358/ /pubmed/37275261 http://dx.doi.org/10.1093/pnasnexus/pgad171 Text en © The Author(s) 2023. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Biological, Health, and Medical Sciences
Wu, Eric
Trevino, Alexandro E
Wu, Zhenqin
Swanson, Kyle
Kim, Honesty J
D’Angio, H Blaize
Preska, Ryan
Chiou, Aaron E
Charville, Gregory W
Dalerba, Piero
Duvvuri, Umamaheswar
Colevas, Alexander D
Levi, Jelena
Bedi, Nikita
Chang, Serena
Sunwoo, John
Egloff, Ann Marie
Uppaluri, Ravindra
Mayer, Aaron T
Zou, James
7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
title 7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
title_full 7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
title_fullStr 7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
title_full_unstemmed 7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
title_short 7-UP: Generating in silico CODEX from a small set of immunofluorescence markers
title_sort 7-up: generating in silico codex from a small set of immunofluorescence markers
topic Biological, Health, and Medical Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236358/
https://www.ncbi.nlm.nih.gov/pubmed/37275261
http://dx.doi.org/10.1093/pnasnexus/pgad171
work_keys_str_mv AT wueric 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT trevinoalexandroe 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT wuzhenqin 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT swansonkyle 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT kimhonestyj 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT dangiohblaize 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT preskaryan 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT chiouaarone 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT charvillegregoryw 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT dalerbapiero 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT duvvuriumamaheswar 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT colevasalexanderd 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT levijelena 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT bedinikita 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT changserena 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT sunwoojohn 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT egloffannmarie 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT uppaluriravindra 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT mayeraaront 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers
AT zoujames 7upgeneratinginsilicocodexfromasmallsetofimmunofluorescencemarkers