Cargando…
Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge
African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to c...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236468/ https://www.ncbi.nlm.nih.gov/pubmed/37142221 http://dx.doi.org/10.1016/j.jbc.2023.104767 |
_version_ | 1785052925602562048 |
---|---|
author | Li, Dan Ren, Jingjing Zhu, Guoqiang Wu, Panxue Yang, Wenping Ru, Yi Feng, Tao Liu, Huanan Zhang, Jing Peng, Jiangling Tian, Hong Liu, Xiangtao Zheng, Haixue |
author_facet | Li, Dan Ren, Jingjing Zhu, Guoqiang Wu, Panxue Yang, Wenping Ru, Yi Feng, Tao Liu, Huanan Zhang, Jing Peng, Jiangling Tian, Hong Liu, Xiangtao Zheng, Haixue |
author_sort | Li, Dan |
collection | PubMed |
description | African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to control ASFV infection. Attenuated live viruses with deleted virulence factors are considered to be the most promising vaccine candidates; however, the mechanism by which these attenuated viruses confer protection is unclear. Here, we used the Chinese ASFV CN/GS/2018 as a backbone and used homologous recombination to generate a virus in which MGF110-9L and MGF360-9L, two genes antagonize host innate antiviral immune response, were deleted (ASFV-ΔMGF110/360-9L). This genetically modified virus was highly attenuated in pigs and provided effective protection of pigs against parental ASFV challenge. Importantly, we found ASFV-ΔMGF110/360-9L infection induced higher expression of Toll-like receptor 2 (TLR2) mRNA compared with parental ASFV as determined by RNA-Seq and RT-PCR analysis. Further immunoblotting results showed that parental ASFV and ASFV-ΔMGF110/360-9L infection inhibited Pam3CSK4-triggered activating phosphorylation of proinflammatory transcription factor NF-κB subunit p65 and phosphorylation of NF-κB inhibitor IκBα levels, although NF-κB activation was higher in ASFV-ΔMGF110/360-9L-infected cells compared with parental ASFV-infected cells. Additionally, we show overexpression of TLR2 inhibited ASFV replication and the expression of ASFV p72 protein, whereas knockdown of TLR2 had the opposite effect. Our findings suggest that the attenuated virulence of ASFV-ΔMGF110/360-9L might be mediated by increased NF-κB and TLR2 signaling. |
format | Online Article Text |
id | pubmed-10236468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-102364682023-06-03 Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge Li, Dan Ren, Jingjing Zhu, Guoqiang Wu, Panxue Yang, Wenping Ru, Yi Feng, Tao Liu, Huanan Zhang, Jing Peng, Jiangling Tian, Hong Liu, Xiangtao Zheng, Haixue J Biol Chem Research Article African swine fever, caused by a large icosahedral DNA virus (African swine fever virus, ASFV), is a highly contagious disease in domestic and feral swine, thus posing a significant economic threat to the global swine industry. Currently, there are no effective vaccines or the available methods to control ASFV infection. Attenuated live viruses with deleted virulence factors are considered to be the most promising vaccine candidates; however, the mechanism by which these attenuated viruses confer protection is unclear. Here, we used the Chinese ASFV CN/GS/2018 as a backbone and used homologous recombination to generate a virus in which MGF110-9L and MGF360-9L, two genes antagonize host innate antiviral immune response, were deleted (ASFV-ΔMGF110/360-9L). This genetically modified virus was highly attenuated in pigs and provided effective protection of pigs against parental ASFV challenge. Importantly, we found ASFV-ΔMGF110/360-9L infection induced higher expression of Toll-like receptor 2 (TLR2) mRNA compared with parental ASFV as determined by RNA-Seq and RT-PCR analysis. Further immunoblotting results showed that parental ASFV and ASFV-ΔMGF110/360-9L infection inhibited Pam3CSK4-triggered activating phosphorylation of proinflammatory transcription factor NF-κB subunit p65 and phosphorylation of NF-κB inhibitor IκBα levels, although NF-κB activation was higher in ASFV-ΔMGF110/360-9L-infected cells compared with parental ASFV-infected cells. Additionally, we show overexpression of TLR2 inhibited ASFV replication and the expression of ASFV p72 protein, whereas knockdown of TLR2 had the opposite effect. Our findings suggest that the attenuated virulence of ASFV-ΔMGF110/360-9L might be mediated by increased NF-κB and TLR2 signaling. American Society for Biochemistry and Molecular Biology 2023-05-02 /pmc/articles/PMC10236468/ /pubmed/37142221 http://dx.doi.org/10.1016/j.jbc.2023.104767 Text en © 2023 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Li, Dan Ren, Jingjing Zhu, Guoqiang Wu, Panxue Yang, Wenping Ru, Yi Feng, Tao Liu, Huanan Zhang, Jing Peng, Jiangling Tian, Hong Liu, Xiangtao Zheng, Haixue Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
title | Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
title_full | Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
title_fullStr | Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
title_full_unstemmed | Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
title_short | Deletions of MGF110-9L and MGF360-9L from African swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
title_sort | deletions of mgf110-9l and mgf360-9l from african swine fever virus are highly attenuated in swine and confer protection against homologous challenge |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236468/ https://www.ncbi.nlm.nih.gov/pubmed/37142221 http://dx.doi.org/10.1016/j.jbc.2023.104767 |
work_keys_str_mv | AT lidan deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT renjingjing deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT zhuguoqiang deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT wupanxue deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT yangwenping deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT ruyi deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT fengtao deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT liuhuanan deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT zhangjing deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT pengjiangling deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT tianhong deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT liuxiangtao deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge AT zhenghaixue deletionsofmgf1109landmgf3609lfromafricanswinefevervirusarehighlyattenuatedinswineandconferprotectionagainsthomologouschallenge |