Cargando…

Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material

[Image: see text] Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIF...

Descripción completa

Detalles Bibliográficos
Autores principales: Gao, Mei-Yan, Bezrukov, Andrey A., Song, Bai-Qiao, He, Meng, Nikkhah, Sousa Javan, Wang, Shi-Qiang, Kumar, Naveen, Darwish, Shaza, Sensharma, Debobroto, Deng, Chenghua, Li, Jiangnan, Liu, Lunjie, Krishna, Rajamani, Vandichel, Matthias, Yang, Sihai, Zaworotko, Michael J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2023
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236493/
https://www.ncbi.nlm.nih.gov/pubmed/37204941
http://dx.doi.org/10.1021/jacs.3c03505
_version_ 1785052937415819264
author Gao, Mei-Yan
Bezrukov, Andrey A.
Song, Bai-Qiao
He, Meng
Nikkhah, Sousa Javan
Wang, Shi-Qiang
Kumar, Naveen
Darwish, Shaza
Sensharma, Debobroto
Deng, Chenghua
Li, Jiangnan
Liu, Lunjie
Krishna, Rajamani
Vandichel, Matthias
Yang, Sihai
Zaworotko, Michael J.
author_facet Gao, Mei-Yan
Bezrukov, Andrey A.
Song, Bai-Qiao
He, Meng
Nikkhah, Sousa Javan
Wang, Shi-Qiang
Kumar, Naveen
Darwish, Shaza
Sensharma, Debobroto
Deng, Chenghua
Li, Jiangnan
Liu, Lunjie
Krishna, Rajamani
Vandichel, Matthias
Yang, Sihai
Zaworotko, Michael J.
author_sort Gao, Mei-Yan
collection PubMed
description [Image: see text] Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C(3)H(4)/C(3)H(6) separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C(3)H(4)/C(3)H(6) selectivity (270) and a new benchmark for productivity (118 mmol g(–1)) of polymer grade C(3)H(6) (purity >99.99%) from a 1:99 C(3)H(4)/C(3)H(6) mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding “sweet spot” for C(3)H(4) in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C(3)H(4) and C(3)H(6) molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.
format Online
Article
Text
id pubmed-10236493
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-102364932023-06-03 Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material Gao, Mei-Yan Bezrukov, Andrey A. Song, Bai-Qiao He, Meng Nikkhah, Sousa Javan Wang, Shi-Qiang Kumar, Naveen Darwish, Shaza Sensharma, Debobroto Deng, Chenghua Li, Jiangnan Liu, Lunjie Krishna, Rajamani Vandichel, Matthias Yang, Sihai Zaworotko, Michael J. J Am Chem Soc [Image: see text] Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C(3)H(4)/C(3)H(6) separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C(3)H(4)/C(3)H(6) selectivity (270) and a new benchmark for productivity (118 mmol g(–1)) of polymer grade C(3)H(6) (purity >99.99%) from a 1:99 C(3)H(4)/C(3)H(6) mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding “sweet spot” for C(3)H(4) in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C(3)H(4) and C(3)H(6) molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent. American Chemical Society 2023-05-19 /pmc/articles/PMC10236493/ /pubmed/37204941 http://dx.doi.org/10.1021/jacs.3c03505 Text en © 2023 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Gao, Mei-Yan
Bezrukov, Andrey A.
Song, Bai-Qiao
He, Meng
Nikkhah, Sousa Javan
Wang, Shi-Qiang
Kumar, Naveen
Darwish, Shaza
Sensharma, Debobroto
Deng, Chenghua
Li, Jiangnan
Liu, Lunjie
Krishna, Rajamani
Vandichel, Matthias
Yang, Sihai
Zaworotko, Michael J.
Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material
title Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material
title_full Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material
title_fullStr Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material
title_full_unstemmed Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material
title_short Highly Productive C(3)H(4)/C(3)H(6) Trace Separation by a Packing Polymorph of a Layered Hybrid Ultramicroporous Material
title_sort highly productive c(3)h(4)/c(3)h(6) trace separation by a packing polymorph of a layered hybrid ultramicroporous material
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236493/
https://www.ncbi.nlm.nih.gov/pubmed/37204941
http://dx.doi.org/10.1021/jacs.3c03505
work_keys_str_mv AT gaomeiyan highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT bezrukovandreya highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT songbaiqiao highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT hemeng highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT nikkhahsousajavan highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT wangshiqiang highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT kumarnaveen highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT darwishshaza highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT sensharmadebobroto highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT dengchenghua highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT lijiangnan highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT liulunjie highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT krishnarajamani highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT vandichelmatthias highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT yangsihai highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial
AT zaworotkomichaelj highlyproductivec3h4c3h6traceseparationbyapackingpolymorphofalayeredhybridultramicroporousmaterial