Cargando…
A Bayesian Approach for Estimating the Survivor Average Causal Effect When Outcomes Are Truncated by Death in Cluster-Randomized Trials
Many studies encounter clustering due to multicenter enrollment and nonmortality outcomes, such as quality of life, that are truncated due to death—that is, missing not at random and nonignorable. Traditional missing-data methods and target causal estimands are suboptimal for statistical inference i...
Autores principales: | Tong, Guangyu, Li, Fan, Chen, Xinyuan, Hirani, Shashivadan P, Newman, Stanton P, Wang, Wei, Harhay, Michael O |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236525/ https://www.ncbi.nlm.nih.gov/pubmed/36799630 http://dx.doi.org/10.1093/aje/kwad038 |
Ejemplares similares
-
The Effect of Telehealth on Quality of Life and Psychological Outcomes Over a 12-Month Period in a Diabetes Cohort Within the Whole Systems Demonstrator Cluster Randomized Trial
por: Hirani, Shashivadan P, et al.
Publicado: (2017) -
A Mobile Telehealth Intervention for Adults With Insulin-Requiring Diabetes: Early Results of a Mixed-Methods Randomized Controlled Trial
por: Baron, Justine, et al.
Publicado: (2015) -
Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies
por: Moreno-Betancur, Margarita, et al.
Publicado: (2018) -
Identification and estimation of survivor average causal effects
por: Tchetgen, Eric J Tchetgen
Publicado: (2014) -
Eliminating Ambiguous Treatment Effects Using Estimands
por: Kahan, Brennan C, et al.
Publicado: (2023)