Cargando…
An analysis of entity normalization evaluation biases in specialized domains
BACKGROUND: Entity normalization is an important information extraction task which has recently gained attention, particularly in the clinical/biomedical and life science domains. On several datasets, state-of-the-art methods perform rather well on popular benchmarks. Yet, we argue that the task is...
Autores principales: | Ferré, Arnaud, Langlais, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236701/ https://www.ncbi.nlm.nih.gov/pubmed/37268890 http://dx.doi.org/10.1186/s12859-023-05350-9 |
Ejemplares similares
-
C-Norm: a neural approach to few-shot entity normalization
por: Ferré, Arnaud, et al.
Publicado: (2020) -
Improving the CONTES method for normalizing biomedical text entities with concepts from an ontology with (almost) no training data
por: Ferré, Arnaud, et al.
Publicado: (2019) -
Combining entity co-occurrence with specialized word embeddings to measure entity relation in Alzheimer’s disease
por: Heo, Go Eun, et al.
Publicado: (2019) -
CNN-based ranking for biomedical entity normalization
por: Li, Haodi, et al.
Publicado: (2017) -
Analysis and Multilabel Classification of Quebec Court Decisions in the Domain of Housing Law
por: Salaün, Olivier, et al.
Publicado: (2020)