Cargando…
Merging bioactivity predictions from cell morphology and chemical fingerprint models using similarity to training data
The applicability domain of machine learning models trained on structural fingerprints for the prediction of biological endpoints is often limited by the lack of diversity of chemical space of the training data. In this work, we developed similarity-based merger models which combined the outputs of...
Autores principales: | Seal, Srijit, Yang, Hongbin, Trapotsi, Maria-Anna, Singh, Satvik, Carreras-Puigvert, Jordi, Spjuth, Ola, Bender, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10236827/ https://www.ncbi.nlm.nih.gov/pubmed/37268960 http://dx.doi.org/10.1186/s13321-023-00723-x |
Ejemplares similares
-
Integrating cell morphology with gene expression and chemical structure to aid mitochondrial toxicity detection
por: Seal, Srijit, et al.
Publicado: (2022) -
Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank
por: Seal, Srijit, et al.
Publicado: (2023) -
QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
por: Škuta, C., et al.
Publicado: (2020) -
A phenomics approach for antiviral drug discovery
por: Rietdijk, Jonne, et al.
Publicado: (2021) -
Evaluating the utility of brightfield image data for mechanism of action prediction
por: Harrison, Philip John, et al.
Publicado: (2023)