Cargando…

An online survival predictor in glioma patients using machine learning based on WHO CNS5 data

BACKGROUND: The World Health Organization (WHO) CNS5 classification system highlights the significance of molecular biomarkers in providing meaningful prognostic and therapeutic information for gliomas. However, predicting individual patient survival remains challenging due to the lack of integrated...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Liguo, Gu, Lingui, Zheng, Zhiyao, Zhang, Xin, Xing, Hao, Guo, Xiaopeng, Chen, Wenlin, Wang, Yaning, Wang, Yuekun, Liang, Tingyu, Wang, Hai, Li, Yilin, Jin, Shanmu, Shi, Yixin, Liu, Delin, Yang, Tianrui, Liu, Qianshu, Deng, Congcong, Wang, Yu, Ma, Wenbin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237015/
https://www.ncbi.nlm.nih.gov/pubmed/37273702
http://dx.doi.org/10.3389/fneur.2023.1179761
_version_ 1785053069525909504
author Ye, Liguo
Gu, Lingui
Zheng, Zhiyao
Zhang, Xin
Xing, Hao
Guo, Xiaopeng
Chen, Wenlin
Wang, Yaning
Wang, Yuekun
Liang, Tingyu
Wang, Hai
Li, Yilin
Jin, Shanmu
Shi, Yixin
Liu, Delin
Yang, Tianrui
Liu, Qianshu
Deng, Congcong
Wang, Yu
Ma, Wenbin
author_facet Ye, Liguo
Gu, Lingui
Zheng, Zhiyao
Zhang, Xin
Xing, Hao
Guo, Xiaopeng
Chen, Wenlin
Wang, Yaning
Wang, Yuekun
Liang, Tingyu
Wang, Hai
Li, Yilin
Jin, Shanmu
Shi, Yixin
Liu, Delin
Yang, Tianrui
Liu, Qianshu
Deng, Congcong
Wang, Yu
Ma, Wenbin
author_sort Ye, Liguo
collection PubMed
description BACKGROUND: The World Health Organization (WHO) CNS5 classification system highlights the significance of molecular biomarkers in providing meaningful prognostic and therapeutic information for gliomas. However, predicting individual patient survival remains challenging due to the lack of integrated quantitative assessment tools. In this study, we aimed to design a WHO CNS5-related risk signature to predict the overall survival (OS) rate of glioma patients using machine learning algorithms. METHODS: We extracted data from patients who underwent an operation for histopathologically confirmed glioma from our hospital database (2011–2022) and split them into a training and hold-out test set in a 7/3 ratio. We used biological markers related to WHO CNS5, clinical data (age, sex, and WHO grade), and prognosis follow-up information to identify prognostic factors and construct a predictive dynamic nomograph to predict the survival rate of glioma patients using 4 kinds machine learning algorithms (RF, SVM, XGB, and GLM). RESULTS: A total of 198 patients with complete WHO5 molecular data and follow-up information were included in the study. The median OS time of all patients was 29.77 [95% confidence interval (CI): 21.19–38.34] months. Age, FGFR2, IDH1, CDK4, CDK6, KIT, and CDKN2A were considered vital indicators related to the prognosis and OS time of glioma. To better predict the prognosis of glioma patients, we constructed a WHO5-related risk signature and nomogram. The AUC values of the ROC curves of the nomogram for predicting the 1, 3, and 5-year OS were 0.849, 0.835, and 0.821 in training set, and, 0.844, 0.943, and 0.959 in validation set. The calibration plot confirmed the reliability of the nomogram, and the c-index was 0.742 in training set and 0.775 in validation set. Additionally, our nomogram showed a superior net benefit across a broader scale of threshold probabilities in decision curve analysis. Therefore, we selected it as the backend for the online survival prediction tool (Glioma Survival Calculator, https://who5pumch.shinyapps.io/DynNomapp/), which can calculate the survival probability for a specific time of the patients. CONCLUSION: An online prognosis predictor based on WHO5-related biomarkers was constructed. This therapeutically promising tool may increase the precision of forecast therapy outcomes and assess prognosis.
format Online
Article
Text
id pubmed-10237015
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-102370152023-06-03 An online survival predictor in glioma patients using machine learning based on WHO CNS5 data Ye, Liguo Gu, Lingui Zheng, Zhiyao Zhang, Xin Xing, Hao Guo, Xiaopeng Chen, Wenlin Wang, Yaning Wang, Yuekun Liang, Tingyu Wang, Hai Li, Yilin Jin, Shanmu Shi, Yixin Liu, Delin Yang, Tianrui Liu, Qianshu Deng, Congcong Wang, Yu Ma, Wenbin Front Neurol Neurology BACKGROUND: The World Health Organization (WHO) CNS5 classification system highlights the significance of molecular biomarkers in providing meaningful prognostic and therapeutic information for gliomas. However, predicting individual patient survival remains challenging due to the lack of integrated quantitative assessment tools. In this study, we aimed to design a WHO CNS5-related risk signature to predict the overall survival (OS) rate of glioma patients using machine learning algorithms. METHODS: We extracted data from patients who underwent an operation for histopathologically confirmed glioma from our hospital database (2011–2022) and split them into a training and hold-out test set in a 7/3 ratio. We used biological markers related to WHO CNS5, clinical data (age, sex, and WHO grade), and prognosis follow-up information to identify prognostic factors and construct a predictive dynamic nomograph to predict the survival rate of glioma patients using 4 kinds machine learning algorithms (RF, SVM, XGB, and GLM). RESULTS: A total of 198 patients with complete WHO5 molecular data and follow-up information were included in the study. The median OS time of all patients was 29.77 [95% confidence interval (CI): 21.19–38.34] months. Age, FGFR2, IDH1, CDK4, CDK6, KIT, and CDKN2A were considered vital indicators related to the prognosis and OS time of glioma. To better predict the prognosis of glioma patients, we constructed a WHO5-related risk signature and nomogram. The AUC values of the ROC curves of the nomogram for predicting the 1, 3, and 5-year OS were 0.849, 0.835, and 0.821 in training set, and, 0.844, 0.943, and 0.959 in validation set. The calibration plot confirmed the reliability of the nomogram, and the c-index was 0.742 in training set and 0.775 in validation set. Additionally, our nomogram showed a superior net benefit across a broader scale of threshold probabilities in decision curve analysis. Therefore, we selected it as the backend for the online survival prediction tool (Glioma Survival Calculator, https://who5pumch.shinyapps.io/DynNomapp/), which can calculate the survival probability for a specific time of the patients. CONCLUSION: An online prognosis predictor based on WHO5-related biomarkers was constructed. This therapeutically promising tool may increase the precision of forecast therapy outcomes and assess prognosis. Frontiers Media S.A. 2023-05-19 /pmc/articles/PMC10237015/ /pubmed/37273702 http://dx.doi.org/10.3389/fneur.2023.1179761 Text en Copyright © 2023 Ye, Gu, Zheng, Zhang, Xing, Guo, Chen, Wang, Wang, Liang, Wang, Li, Jin, Shi, Liu, Yang, Liu, Deng, Wang and Ma. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Neurology
Ye, Liguo
Gu, Lingui
Zheng, Zhiyao
Zhang, Xin
Xing, Hao
Guo, Xiaopeng
Chen, Wenlin
Wang, Yaning
Wang, Yuekun
Liang, Tingyu
Wang, Hai
Li, Yilin
Jin, Shanmu
Shi, Yixin
Liu, Delin
Yang, Tianrui
Liu, Qianshu
Deng, Congcong
Wang, Yu
Ma, Wenbin
An online survival predictor in glioma patients using machine learning based on WHO CNS5 data
title An online survival predictor in glioma patients using machine learning based on WHO CNS5 data
title_full An online survival predictor in glioma patients using machine learning based on WHO CNS5 data
title_fullStr An online survival predictor in glioma patients using machine learning based on WHO CNS5 data
title_full_unstemmed An online survival predictor in glioma patients using machine learning based on WHO CNS5 data
title_short An online survival predictor in glioma patients using machine learning based on WHO CNS5 data
title_sort online survival predictor in glioma patients using machine learning based on who cns5 data
topic Neurology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237015/
https://www.ncbi.nlm.nih.gov/pubmed/37273702
http://dx.doi.org/10.3389/fneur.2023.1179761
work_keys_str_mv AT yeliguo anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT gulingui anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT zhengzhiyao anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT zhangxin anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT xinghao anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT guoxiaopeng anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT chenwenlin anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wangyaning anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wangyuekun anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liangtingyu anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wanghai anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liyilin anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT jinshanmu anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT shiyixin anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liudelin anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT yangtianrui anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liuqianshu anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT dengcongcong anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wangyu anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT mawenbin anonlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT yeliguo onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT gulingui onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT zhengzhiyao onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT zhangxin onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT xinghao onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT guoxiaopeng onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT chenwenlin onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wangyaning onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wangyuekun onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liangtingyu onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wanghai onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liyilin onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT jinshanmu onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT shiyixin onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liudelin onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT yangtianrui onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT liuqianshu onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT dengcongcong onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT wangyu onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data
AT mawenbin onlinesurvivalpredictoringliomapatientsusingmachinelearningbasedonwhocns5data