Cargando…

Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test

The discrete element computer simulation method is an effective tool that enables the study of the interaction mechanism between the pulping components and the paddy soil during the paddy field pulping process. The findings are valuable in optimizing the parameters of the paddy beating device to imp...

Descripción completa

Detalles Bibliográficos
Autores principales: Tienan, Zhou, Zhou, Hao, Ji, Jiangtao, Sun, Fengyun, Qin, Zhiyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237372/
https://www.ncbi.nlm.nih.gov/pubmed/37267335
http://dx.doi.org/10.1371/journal.pone.0285428
_version_ 1785053142625288192
author Tienan, Zhou
Zhou, Hao
Ji, Jiangtao
Sun, Fengyun
Qin, Zhiyu
author_facet Tienan, Zhou
Zhou, Hao
Ji, Jiangtao
Sun, Fengyun
Qin, Zhiyu
author_sort Tienan, Zhou
collection PubMed
description The discrete element computer simulation method is an effective tool that enables the study of the interaction mechanism between the pulping components and the paddy soil during the paddy field pulping process. The findings are valuable in optimizing the parameters of the paddy beating device to improve its working quality and efficiency. However, the lack of accurate soil models for paddy soil has limited the application and development of the discrete element method in paddy pulping research. This study selected the Hertz-Mindlin with Johnson-Kendall-Roberts discrete element model for the pre-pulping paddy loam soil and used the slump error as the test index to select nine parameters, including soil Poisson’s ratio and surface energy, as test factors to calibrate the model parameters. The Plackett-Burman test identified soil shear modulus, surface energy, and soil-iron plate static friction coefficient as significant factors affecting the test index. The steepest ascent test results determined the test range of the above parameters. The Box-Behnken test obtained the regression model between the significant factors and the test index, and the regression model was optimized using the slump error as the target. The optimal combination of parameters was surface energy of 3.257 J/m(2), soil shear modulus of 0.709 MPa, and static friction coefficient between soil and iron plate of 0.701. The slump simulation test using this combination of parameters yielded an average slump error of 2.04%. The collective results indicate the accuracy of the calibrated discrete element simulation parameters for paddy loam soil. These parameters can be used for discrete element simulation analysis of the paddy pulping process after paddy field soaking.
format Online
Article
Text
id pubmed-10237372
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-102373722023-06-03 Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test Tienan, Zhou Zhou, Hao Ji, Jiangtao Sun, Fengyun Qin, Zhiyu PLoS One Research Article The discrete element computer simulation method is an effective tool that enables the study of the interaction mechanism between the pulping components and the paddy soil during the paddy field pulping process. The findings are valuable in optimizing the parameters of the paddy beating device to improve its working quality and efficiency. However, the lack of accurate soil models for paddy soil has limited the application and development of the discrete element method in paddy pulping research. This study selected the Hertz-Mindlin with Johnson-Kendall-Roberts discrete element model for the pre-pulping paddy loam soil and used the slump error as the test index to select nine parameters, including soil Poisson’s ratio and surface energy, as test factors to calibrate the model parameters. The Plackett-Burman test identified soil shear modulus, surface energy, and soil-iron plate static friction coefficient as significant factors affecting the test index. The steepest ascent test results determined the test range of the above parameters. The Box-Behnken test obtained the regression model between the significant factors and the test index, and the regression model was optimized using the slump error as the target. The optimal combination of parameters was surface energy of 3.257 J/m(2), soil shear modulus of 0.709 MPa, and static friction coefficient between soil and iron plate of 0.701. The slump simulation test using this combination of parameters yielded an average slump error of 2.04%. The collective results indicate the accuracy of the calibrated discrete element simulation parameters for paddy loam soil. These parameters can be used for discrete element simulation analysis of the paddy pulping process after paddy field soaking. Public Library of Science 2023-06-02 /pmc/articles/PMC10237372/ /pubmed/37267335 http://dx.doi.org/10.1371/journal.pone.0285428 Text en © 2023 Tienan et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Tienan, Zhou
Zhou, Hao
Ji, Jiangtao
Sun, Fengyun
Qin, Zhiyu
Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
title Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
title_full Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
title_fullStr Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
title_full_unstemmed Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
title_short Parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
title_sort parameter calibration of the discrete element simulation model for soaking paddy loam soil based on the slump test
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237372/
https://www.ncbi.nlm.nih.gov/pubmed/37267335
http://dx.doi.org/10.1371/journal.pone.0285428
work_keys_str_mv AT tienanzhou parametercalibrationofthediscreteelementsimulationmodelforsoakingpaddyloamsoilbasedontheslumptest
AT zhouhao parametercalibrationofthediscreteelementsimulationmodelforsoakingpaddyloamsoilbasedontheslumptest
AT jijiangtao parametercalibrationofthediscreteelementsimulationmodelforsoakingpaddyloamsoilbasedontheslumptest
AT sunfengyun parametercalibrationofthediscreteelementsimulationmodelforsoakingpaddyloamsoilbasedontheslumptest
AT qinzhiyu parametercalibrationofthediscreteelementsimulationmodelforsoakingpaddyloamsoilbasedontheslumptest