Cargando…
Dual-band and high-efficiency metasurface-based circular-to-linear polarization converter
In this paper, to achieve circular-to-linear polarization conversion, a novel polarization converter based on an anisotropic metasurface is proposed. Because the polarization converter is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v, theoretical a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10237393/ https://www.ncbi.nlm.nih.gov/pubmed/37267396 http://dx.doi.org/10.1371/journal.pone.0286411 |
Sumario: | In this paper, to achieve circular-to-linear polarization conversion, a novel polarization converter based on an anisotropic metasurface is proposed. Because the polarization converter is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v, theoretical analysis shows that the polarization converter can achieve circular-to-linear polarization conversion if its reflection phase difference Δφ(uv) under u-polarized and v-polarized incidences is close to ±90°. Numerical simulations show that the reflection phase difference Δφ(uv) of the polarization converter is very close to +90° in two separated frequency ranges, so the polarization converter can achieve high-efficiency and dual-band CP-to-LP polarization conversion, it can convert right-handed circular-polarized (RHCP) and left-handed circular-polarized (LHCP) waves into y-polarized and x-polarized waves respectively in the two separated frequency bands of 8.08–9.27 GHz and 13.80–27.11 GHz; moreover, its polarization conversion rate (PCR) is kept larger than 99.7% in the two frequency bands. Finally, to validate the design, a prototype is manufactured and measured, the measured results are in good agreement with the simulated ones. |
---|