Cargando…
Predicting the presence of tinnitus using ecological momentary assessments
Mobile applications have gained popularity in healthcare in recent years. These applications are an increasingly important pillar of public health care, as they open up new possibilities for data collection and can lead to new insights into various diseases and disorders thanks to modern data analys...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238428/ https://www.ncbi.nlm.nih.gov/pubmed/37268689 http://dx.doi.org/10.1038/s41598-023-36172-7 |
_version_ | 1785053291362648064 |
---|---|
author | Breitmayer, Marius Stach, Michael Kraft, Robin Allgaier, Johannes Reichert, Manfred Schlee, Winfried Probst, Thomas Langguth, Berthold Pryss, Rüdiger |
author_facet | Breitmayer, Marius Stach, Michael Kraft, Robin Allgaier, Johannes Reichert, Manfred Schlee, Winfried Probst, Thomas Langguth, Berthold Pryss, Rüdiger |
author_sort | Breitmayer, Marius |
collection | PubMed |
description | Mobile applications have gained popularity in healthcare in recent years. These applications are an increasingly important pillar of public health care, as they open up new possibilities for data collection and can lead to new insights into various diseases and disorders thanks to modern data analysis approaches. In this context, Ecological Momentary Assessment (EMA) is a commonly used research method that aims to assess phenomena with a focus on ecological validity and to help both the user and the researcher observe these phenomena over time. One phenomenon that benefits from this capability is the chronic condition tinnitus. TrackYourTinnitus (TYT) is an EMA-based mobile crowdsensing platform designed to provide more insight into tinnitus by repeatedly assessing various dimensions of tinnitus, including perception (i.e., perceived presence). Because the presence of tinnitus is the dimension that is of great importance to chronic tinnitus patients and changes over time in many tinnitus patients, we seek to predict the presence of tinnitus based on the not directly related dimensions of mood, stress level, arousal, and concentration level that are captured in TYT. In this work, we analyzed a dataset of 45,935 responses to a harmonized EMA questionnaire using different machine learning techniques. In addition, we considered five different subgroups after consultation with clinicians to further validate our results. Finally, we were able to predict the presence of tinnitus with an accuracy of up to 78% and an AUC of up to 85.7%. |
format | Online Article Text |
id | pubmed-10238428 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-102384282023-06-04 Predicting the presence of tinnitus using ecological momentary assessments Breitmayer, Marius Stach, Michael Kraft, Robin Allgaier, Johannes Reichert, Manfred Schlee, Winfried Probst, Thomas Langguth, Berthold Pryss, Rüdiger Sci Rep Article Mobile applications have gained popularity in healthcare in recent years. These applications are an increasingly important pillar of public health care, as they open up new possibilities for data collection and can lead to new insights into various diseases and disorders thanks to modern data analysis approaches. In this context, Ecological Momentary Assessment (EMA) is a commonly used research method that aims to assess phenomena with a focus on ecological validity and to help both the user and the researcher observe these phenomena over time. One phenomenon that benefits from this capability is the chronic condition tinnitus. TrackYourTinnitus (TYT) is an EMA-based mobile crowdsensing platform designed to provide more insight into tinnitus by repeatedly assessing various dimensions of tinnitus, including perception (i.e., perceived presence). Because the presence of tinnitus is the dimension that is of great importance to chronic tinnitus patients and changes over time in many tinnitus patients, we seek to predict the presence of tinnitus based on the not directly related dimensions of mood, stress level, arousal, and concentration level that are captured in TYT. In this work, we analyzed a dataset of 45,935 responses to a harmonized EMA questionnaire using different machine learning techniques. In addition, we considered five different subgroups after consultation with clinicians to further validate our results. Finally, we were able to predict the presence of tinnitus with an accuracy of up to 78% and an AUC of up to 85.7%. Nature Publishing Group UK 2023-06-02 /pmc/articles/PMC10238428/ /pubmed/37268689 http://dx.doi.org/10.1038/s41598-023-36172-7 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Breitmayer, Marius Stach, Michael Kraft, Robin Allgaier, Johannes Reichert, Manfred Schlee, Winfried Probst, Thomas Langguth, Berthold Pryss, Rüdiger Predicting the presence of tinnitus using ecological momentary assessments |
title | Predicting the presence of tinnitus using ecological momentary assessments |
title_full | Predicting the presence of tinnitus using ecological momentary assessments |
title_fullStr | Predicting the presence of tinnitus using ecological momentary assessments |
title_full_unstemmed | Predicting the presence of tinnitus using ecological momentary assessments |
title_short | Predicting the presence of tinnitus using ecological momentary assessments |
title_sort | predicting the presence of tinnitus using ecological momentary assessments |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238428/ https://www.ncbi.nlm.nih.gov/pubmed/37268689 http://dx.doi.org/10.1038/s41598-023-36172-7 |
work_keys_str_mv | AT breitmayermarius predictingthepresenceoftinnitususingecologicalmomentaryassessments AT stachmichael predictingthepresenceoftinnitususingecologicalmomentaryassessments AT kraftrobin predictingthepresenceoftinnitususingecologicalmomentaryassessments AT allgaierjohannes predictingthepresenceoftinnitususingecologicalmomentaryassessments AT reichertmanfred predictingthepresenceoftinnitususingecologicalmomentaryassessments AT schleewinfried predictingthepresenceoftinnitususingecologicalmomentaryassessments AT probstthomas predictingthepresenceoftinnitususingecologicalmomentaryassessments AT langguthberthold predictingthepresenceoftinnitususingecologicalmomentaryassessments AT pryssrudiger predictingthepresenceoftinnitususingecologicalmomentaryassessments |