Cargando…

De novo transcriptome assembly and gene annotation for the toxic dinoflagellate Dinophysis

Species within the dinoflagellate genus Dinophysis can produce okadiac acid and dinophysistoxins leading to diarrhetic shellfish poisoning. Since the first report of D. ovum from the Gulf of Mexico in 2008, reports of other Dinophysis species across US have increased. Members of the D. cf. acuminata...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaonkar, Chetan C., Campbell, Lisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238436/
https://www.ncbi.nlm.nih.gov/pubmed/37268695
http://dx.doi.org/10.1038/s41597-023-02250-8
Descripción
Sumario:Species within the dinoflagellate genus Dinophysis can produce okadiac acid and dinophysistoxins leading to diarrhetic shellfish poisoning. Since the first report of D. ovum from the Gulf of Mexico in 2008, reports of other Dinophysis species across US have increased. Members of the D. cf. acuminata complex (D. acuminata, D. acuta, D. ovum, D. sacculus) are difficult to differentiate due to their morphological similarities. Dinophysis feeds on and steals the chloroplasts from the ciliate, Mesodinium rubrum, which in turn has fed on and captured the chloroplasts of its prey, the cryptophyte Teleaulax amphioxeia. The objective of this study was to generate de novo transcriptomes for new isolates of these mixotrophic organisms. The transcriptomes obtained will serve as a reference for future experiments to assess the effect of different abiotic and biotic conditions and will also provide a useful resource for screening potential marker genes to differentiate among the closely related species within the D. cf. acuminata-complex. The complete comprehensive detailed workflow and links to obtain the transcriptome data are provided.