Cargando…

Urinary concentrations of GHB and its novel amino acid and carnitine conjugates following controlled GHB administration to humans

Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB...

Descripción completa

Detalles Bibliográficos
Autores principales: Steuer, Andrea E., Bavato, Francesco, Schnider, Laura K., Dornbierer, Dario A., Bosch, Oliver G., Quednow, Boris B., Seifritz, Erich, Steuer, Christian, Kraemer, Thomas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238486/
https://www.ncbi.nlm.nih.gov/pubmed/37268859
http://dx.doi.org/10.1038/s41598-023-36213-1
Descripción
Sumario:Gamma-hydroxybutyrate (GHB) remains a challenging clinical/forensic toxicology drug. Its rapid elimination to endogenous levels mainly causes this. Especially in drug-facilitated sexual assaults, sample collection often occurs later than the detection window for GHB. We aimed to investigate new GHB conjugates with amino acids (AA), fatty acids, and its organic acid metabolites for their suitability as ingestion/application markers in urine following controlled GHB administration to humans. We used LC–MS/MS for validated quantification of human urine samples collected within two randomized, double-blinded, placebo-controlled crossover studies (GHB 50 mg/kg, 79 participants) at approximately 4.5, 8, 11, and 28 h after intake. We found significant differences (placebo vs. GHB) for all but two analytes at 4.5 h. Eleven hours post GHB administration, GHB, GHB-AAs, 3,4-dihydroxybutyric acid, and glycolic acid still showed significantly higher concentrations; at 28 h only GHB-glycine. Three different discrimination strategies were evaluated: (a) GHB-glycine cut-off concentration (1 µg/mL), (b) metabolite ratios of GHB-glycine/GHB (2.5), and (c) elevation threshold between two urine samples (> 5). Sensitivities were 0.1, 0.3, or 0.5, respectively. Only GHB-glycine showed prolonged detection over GHB, mainly when compared to a second time- and subject-matched urine sample (strategy c).