Cargando…
Machine learning explainability in nasopharyngeal cancer survival using LIME and SHAP
Nasopharyngeal cancer (NPC) has a unique histopathology compared with other head and neck cancers. Individual NPC patients may attain different outcomes. This study aims to build a prognostic system by combining a highly accurate machine learning model (ML) model with explainable artificial intellig...
Autores principales: | Alabi, Rasheed Omobolaji, Elmusrati, Mohammed, Leivo, Ilmo, Almangush, Alhadi, Mäkitie, Antti A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238539/ https://www.ncbi.nlm.nih.gov/pubmed/37268685 http://dx.doi.org/10.1038/s41598-023-35795-0 |
Ejemplares similares
-
Measuring the Usability and Quality of Explanations of a Machine Learning Web-Based Tool for Oral Tongue Cancer Prognostication
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2022) -
Deep Machine Learning for Oral Cancer: From Precise Diagnosis to Precision Medicine
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2022) -
The risk of second primary cancer after nasopharyngeal cancer: a systematic review
por: Svärd, Fanni, et al.
Publicado: (2023) -
Machine learning application for prediction of locoregional recurrences in early oral tongue cancer: a Web-based prognostic tool
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2019) -
Utilizing Deep Machine Learning for Prognostication of Oral Squamous Cell Carcinoma—A Systematic Review
por: Alabi, Rasheed Omobolaji, et al.
Publicado: (2021)