Cargando…
Extracting continuous sleep depth from EEG data without machine learning
The human sleep-cycle has been divided into discrete sleep stages that can be recognized in electroencephalographic (EEG) and other bio-signals by trained specialists or machine learning systems. It is however unclear whether these human-defined stages can be re-discovered with unsupervised methods...
Autores principales: | Metzner, Claus, Schilling, Achim, Traxdorf, Maximilian, Schulze, Holger, Tziridis, Konstantin, Krauss, Patrick |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238579/ https://www.ncbi.nlm.nih.gov/pubmed/37275555 http://dx.doi.org/10.1016/j.nbscr.2023.100097 |
Ejemplares similares
-
Analysis of Multichannel EEG Patterns During Human Sleep: A Novel Approach
por: Krauss, Patrick, et al.
Publicado: (2018) -
Sleep as a random walk: a super-statistical analysis of EEG data across sleep stages
por: Metzner, Claus, et al.
Publicado: (2021) -
Classification at the accuracy limit: facing the problem of data ambiguity
por: Metzner, Claus, et al.
Publicado: (2022) -
A statistical method for analyzing and comparing spatiotemporal cortical activation patterns
por: Krauss, Patrick, et al.
Publicado: (2018) -
Analysis and visualization of sleep stages based on deep neural networks
por: Krauss, Patrick, et al.
Publicado: (2021)