Cargando…
Predicting U.S. county opioid poisoning mortality from multi-modal social media and psychological self-report data
Opioid poisoning mortality is a substantial public health crisis in the United States, with opioids involved in approximately 75% of the nearly 1 million drug related deaths since 1999. Research suggests that the epidemic is driven by both over-prescribing and social and psychological determinants s...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238775/ https://www.ncbi.nlm.nih.gov/pubmed/37270657 http://dx.doi.org/10.1038/s41598-023-34468-2 |
Sumario: | Opioid poisoning mortality is a substantial public health crisis in the United States, with opioids involved in approximately 75% of the nearly 1 million drug related deaths since 1999. Research suggests that the epidemic is driven by both over-prescribing and social and psychological determinants such as economic stability, hopelessness, and isolation. Hindering this research is a lack of measurements of these social and psychological constructs at fine-grained spatial and temporal resolutions. To address this issue, we use a multi-modal data set consisting of natural language from Twitter, psychometric self-reports of depression and well-being, and traditional area-based measures of socio-demographics and health-related risk factors. Unlike previous work using social media data, we do not rely on opioid or substance related keywords to track community poisonings. Instead, we leverage a large, open vocabulary of thousands of words in order to fully characterize communities suffering from opioid poisoning, using a sample of 1.5 billion tweets from 6 million U.S. county mapped Twitter users. Results show that Twitter language predicted opioid poisoning mortality better than factors relating to socio-demographics, access to healthcare, physical pain, and psychological well-being. Additionally, risk factors revealed by the Twitter language analysis included negative emotions, discussions of long work hours, and boredom, whereas protective factors included resilience, travel/leisure, and positive emotions, dovetailing with results from the psychometric self-report data. The results show that natural language from public social media can be used as a surveillance tool for both predicting community opioid poisonings and understanding the dynamic social and psychological nature of the epidemic. |
---|