Cargando…
Development of a machine learning-based signature utilizing inflammatory response genes for predicting prognosis and immune microenvironment in ovarian cancer
Ovarian cancer (OC) represents a significant health challenge, characterized by a particularly unfavorable prognosis for affected women. Accumulating evidence supports the notion that inflammation-related factors impacting the normal ovarian epithelium may contribute to the development of OC. Howeve...
Autores principales: | Dong, Li, Qian, Ya-ping, Li, Shu-xiu, Pan, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
De Gruyter
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238811/ https://www.ncbi.nlm.nih.gov/pubmed/37273921 http://dx.doi.org/10.1515/med-2023-0734 |
Ejemplares similares
-
Landscape of Immune Microenvironment in Epithelial Ovarian Cancer and Establishing Risk Model by Machine Learning
por: Liu, Shi-yi, et al.
Publicado: (2021) -
Identification of Hypoxia Signature to Assess the Tumor Immune Microenvironment and Predict Prognosis in Patients with Ovarian Cancer
por: Wei, Chunyan, et al.
Publicado: (2021) -
Three Genes Predict Prognosis in Microenvironment of Ovarian Cancer
por: Guo, Ya, et al.
Publicado: (2020) -
Identification and Verification of Necroptosis-Related Gene Signature With Prognosis and Tumor Immune Microenvironment in Ovarian Cancer
por: Wang, Zitao, et al.
Publicado: (2022) -
A novel autophagy-related gene signature associated with prognosis and immune microenvironment in ovarian cancer
por: Yang, Jiani, et al.
Publicado: (2023)