Cargando…
Deep learning supported mitoses counting on whole slide images: A pilot study for validating breast cancer grading in the clinical workflow
INTRODUCTION: Breast cancer (BC) prognosis is largely influenced by histopathological grade, assessed according to the Nottingham modification of Bloom-Richardson (BR). Mitotic count (MC) is a component of histopathological grading but is prone to subjectivity. This study investigated whether mitose...
Autores principales: | van Bergeijk, Stijn A., Stathonikos, Nikolas, ter Hoeve, Natalie D., Lafarge, Maxime W., Nguyen, Tri Q., van Diest, Paul J., Veta, Mitko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238836/ https://www.ncbi.nlm.nih.gov/pubmed/37273455 http://dx.doi.org/10.1016/j.jpi.2023.100316 |
Ejemplares similares
-
Deep learning-based grading of ductal carcinoma in situ in breast histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2021) -
Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images
por: Wetstein, Suzanne C., et al.
Publicado: (2022) -
Going fully digital: Perspective of a Dutch academic pathology lab
por: Stathonikos, Nikolas, et al.
Publicado: (2013) -
CONFIDENT-trial protocol: a pragmatic template for clinical implementation of artificial intelligence assistance in pathology
por: Flach, Rachel N, et al.
Publicado: (2023) -
Defining the area of mitoses counting in invasive breast cancer using whole slide image
por: Ibrahim, Asmaa, et al.
Publicado: (2021)