Cargando…
The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis
Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, pla...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238880/ https://www.ncbi.nlm.nih.gov/pubmed/37245286 http://dx.doi.org/10.1016/j.redox.2023.102731 |
_version_ | 1785053376426278912 |
---|---|
author | Casatejada, Azahara Puerto-Galán, Leonor Pérez-Ruiz, Juan M. Cejudo, Francisco J. |
author_facet | Casatejada, Azahara Puerto-Galán, Leonor Pérez-Ruiz, Juan M. Cejudo, Francisco J. |
author_sort | Casatejada, Azahara |
collection | PubMed |
description | Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy. |
format | Online Article Text |
id | pubmed-10238880 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-102388802023-06-04 The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis Casatejada, Azahara Puerto-Galán, Leonor Pérez-Ruiz, Juan M. Cejudo, Francisco J. Redox Biol Research Paper Oxidizing signals mediated by the thiol-dependent peroxidase activity of 2-Cys peroxiredoxins (PRXs) plays an essential role in fine-tuning chloroplast redox balance in response to changes in light intensity, a function that depends on NADPH-dependent thioredoxin reductase C (NTRC). In addition, plant chloroplasts are equipped with glutathione peroxidases (GPXs), thiol-dependent peroxidases that rely on thioredoxins (TRXs). Despite having a similar reaction mechanism than 2-Cys PRXs, the contribution of oxidizing signals mediated by GPXs to the chloroplast redox homeostasis remains poorly known. To address this issue, we have generated the Arabidopsis (Arabidopsis thaliana) double mutant gpx1gpx7, which is devoid of the two GPXs, 1 and 7, localized in the chloroplast. Furthermore, to analyze the functional relationship of chloroplast GPXs with the NTRC-2-Cys PRXs redox system, the 2cpab-gpx1gpx7 and ntrc-gpx1gpx7 mutants were generated. The gpx1gpx7 mutant displayed wild type-like phenotype indicating that chloroplast GPXs are dispensable for plant growth at least under standard conditions. However, the 2cpab-gpx1gpx7 showed more retarded growth than the 2cpab mutant. The simultaneous lack of 2-Cys PRXs and GPXs affected PSII performance and caused higher delay of enzyme oxidation in the dark. In contrast, the ntrc-gpx1gpx7 mutant combining the lack of NTRC and chloroplast GPXs behaved like the ntrc mutant indicating that the contribution of GPXs to chloroplast redox homeostasis is independent of NTRC. Further supporting this notion, in vitro assays showed that GPXs are not reduced by NTRC but by TRX y2. Based on these results, we propose a role for GPXs in the chloroplast redox hierarchy. Elsevier 2023-05-22 /pmc/articles/PMC10238880/ /pubmed/37245286 http://dx.doi.org/10.1016/j.redox.2023.102731 Text en © 2023 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Paper Casatejada, Azahara Puerto-Galán, Leonor Pérez-Ruiz, Juan M. Cejudo, Francisco J. The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis |
title | The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis |
title_full | The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis |
title_fullStr | The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis |
title_full_unstemmed | The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis |
title_short | The contribution of glutathione peroxidases to chloroplast redox homeostasis in Arabidopsis |
title_sort | contribution of glutathione peroxidases to chloroplast redox homeostasis in arabidopsis |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238880/ https://www.ncbi.nlm.nih.gov/pubmed/37245286 http://dx.doi.org/10.1016/j.redox.2023.102731 |
work_keys_str_mv | AT casatejadaazahara thecontributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT puertogalanleonor thecontributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT perezruizjuanm thecontributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT cejudofranciscoj thecontributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT casatejadaazahara contributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT puertogalanleonor contributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT perezruizjuanm contributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis AT cejudofranciscoj contributionofglutathioneperoxidasestochloroplastredoxhomeostasisinarabidopsis |