Cargando…

Mobile and wearable technologies for the analysis of Ten Meter Walk Test: A concise systematic review

Physical issues started to receive more attention due to the sedentary lifestyle prevalent in modern culture. The Ten Meter Walk Test allows measuring the person’s capacity to walk along 10 m and analyzing the advancement of various medical procedures for ailments, including stroke. This systematic...

Descripción completa

Detalles Bibliográficos
Autores principales: Gabriel, Cristiana Lopes, Pires, Ivan Miguel, Coelho, Paulo Jorge, Zdravevski, Eftim, Lameski, Petre, Mewada, Hiren, Madeira, Filipe, Garcia, Nuno M., Carreto, Carlos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238910/
https://www.ncbi.nlm.nih.gov/pubmed/37274667
http://dx.doi.org/10.1016/j.heliyon.2023.e16599
Descripción
Sumario:Physical issues started to receive more attention due to the sedentary lifestyle prevalent in modern culture. The Ten Meter Walk Test allows measuring the person’s capacity to walk along 10 m and analyzing the advancement of various medical procedures for ailments, including stroke. This systematic review is related to the use of mobile or wearable devices to measure physical parameters while administering the Ten Meter Walk Test for the analysis of the performance of the test. We applied the PRISMA methodology for searching the papers related to the Ten Meter Walk Test. Natural Language Processing (NLP) algorithms were used to automate the screening process. Various papers published in two decades from multiple scientific databases, including IEEE Xplore, Elsevier, Springer, EMBASE, SCOPUS, Multidisciplinary Digital Publishing Institute (MDPI), and PubMed Central were analyzed, focusing on various diseases, devices, features, and methods. The study reveals that chronometer and accelerometer sensors measuring spatiotemporal features are the most pertinent in the Gait characterization of most diseases. Likewise, all studies emphasized the close relation between the quality of the sensor’s data obtained and the system’s ultimate accuracy. In other words, calibration procedures are needed because of the body part where the sensor is worn and the type of sensor. In addition, using ambient sensors providing kinematic and kinetic features in conjunction with wearable sensors and consistently acquiring walking signals can enhance the system’s performance. The most common weaknesses in the analyzed studies are the sample size and the unavailability of continuous monitoring devices for measuring the Ten Meter Walk Test.