Cargando…
Deep learning classification of uveal melanoma based on histopathological images and identification of a novel indicator for prognosis of patients
BACKGROUND: Deep learning has been extensively used in digital histopathology. The purpose of this study was to test deep learning (DL) algorithms for predicting the vital status of whole-slide image (WSI) of uveal melanoma (UM). METHODS: We developed a deep learning model (Google-net) to predict th...
Autores principales: | Wan, Qi, Ren, Xiang, Wei, Ran, Yue, Shali, Wang, Lixiang, Yin, Hongbo, Tang, Jing, Zhang, Ming, Ma, Ke, Deng, Ying-ping |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239131/ https://www.ncbi.nlm.nih.gov/pubmed/37268878 http://dx.doi.org/10.1186/s12575-023-00207-0 |
Ejemplares similares
-
Alternative Splicing Events as Indicators for the Prognosis of Uveal Melanoma
por: Wan, Qi, et al.
Publicado: (2020) -
Color Fusion Effect on Deep Learning Classification of Uveal Melanoma
por: Yao, Xincheng, et al.
Publicado: (2023) -
Uveal melanoma: Estimating prognosis
por: Kaliki, Swathi, et al.
Publicado: (2015) -
MR imaging characteristics of uveal melanoma with histopathological validation
por: Ferreira, Teresa A., et al.
Publicado: (2021) -
DNA Repair Genes Are Associated with Subtype Classification, Prognosis, and Immune Infiltration in Uveal Melanoma
por: Wang, Tao, et al.
Publicado: (2022)