Cargando…

KATZNCP: a miRNA–disease association prediction model integrating KATZ algorithm and network consistency projection

BACKGROUND: Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA–disea...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Min, Deng, Yingwei, Li, Zejun, Ye, Yifan, He, Ziyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239144/
https://www.ncbi.nlm.nih.gov/pubmed/37268893
http://dx.doi.org/10.1186/s12859-023-05365-2
Descripción
Sumario:BACKGROUND: Clinical studies have shown that miRNAs are closely related to human health. The study of potential associations between miRNAs and diseases will contribute to a profound understanding of the mechanism of disease development, as well as human disease prevention and treatment. MiRNA–disease associations predicted by computational methods are the best complement to biological experiments. RESULTS: In this research, a federated computational model KATZNCP was proposed on the basis of the KATZ algorithm and network consistency projection to infer the potential miRNA–disease associations. In KATZNCP, a heterogeneous network was initially constructed by integrating the known miRNA–disease association, integrated miRNA similarities, and integrated disease similarities; then, the KATZ algorithm was implemented in the heterogeneous network to obtain the estimated miRNA–disease prediction scores. Finally, the precise scores were obtained by the network consistency projection method as the final prediction results. KATZNCP achieved the reliable predictive performance in leave-one-out cross-validation (LOOCV) with an AUC value of 0.9325, which was better than the state-of-the-art comparable algorithms. Furthermore, case studies of lung neoplasms and esophageal neoplasms demonstrated the excellent predictive performance of KATZNCP. CONCLUSION: A new computational model KATZNCP was proposed for predicting potential miRNA–drug associations based on KATZ and network consistency projections, which can effectively predict the potential miRNA–disease interactions. Therefore, KATZNCP can be used to provide guidance for future experiments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-023-05365-2.