Cargando…
Drug–disease association prediction with literature based multi-feature fusion
Introduction: Exploring the potential efficacy of a drug is a valid approach for drug development with shorter development times and lower costs. Recently, several computational drug repositioning methods have been introduced to learn multi-features for potential association prediction. However, ful...
Autores principales: | Kang, Hongyu, Hou, Li, Gu, Yaowen, Lu, Xiao, Li, Jiao, Li, Qin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239876/ https://www.ncbi.nlm.nih.gov/pubmed/37284317 http://dx.doi.org/10.3389/fphar.2023.1205144 |
Ejemplares similares
-
EFMSDTI: Drug-target interaction prediction based on an efficient fusion of multi-source data
por: Zhang, Yuanyuan, et al.
Publicado: (2022) -
MFDA: Multiview fusion based on dual-level attention for drug interaction prediction
por: Lin, Kaibiao, et al.
Publicado: (2022) -
DDA-SKF: Predicting Drug–Disease Associations Using Similarity Kernel Fusion
por: Gao, Chu-Qiao, et al.
Publicado: (2022) -
Combining non-negative matrix factorization with graph Laplacian regularization for predicting drug-miRNA associations based on multi-source information fusion
por: Wang, Mei-Neng, et al.
Publicado: (2023) -
Multi-view feature representation and fusion for drug-drug interactions prediction
por: Wang, Jing, et al.
Publicado: (2023)