Cargando…
Whole slide imaging-based deep learning to predict the treatment response of patients with non-small cell lung cancer
BACKGROUND: This study developed and validated a deep learning (DL) model based on whole slide imaging (WSI) for predicting the treatment response to chemotherapy and radiotherapy (CRT) among patients with non-small cell lung cancer (NSCLC). METHODS: We collected the WSI of 120 nonsurgical patients...
Autores principales: | Pan, Yuteng, Sheng, Wei, Shi, Liting, Jing, Di, Jiang, Wei, Chen, Jyh-Cheng, Wang, Haiyan, Qiu, Jianfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10239990/ https://www.ncbi.nlm.nih.gov/pubmed/37284119 http://dx.doi.org/10.21037/qims-22-1098 |
Ejemplares similares
-
Multi-phase contrast-enhanced magnetic resonance image-based radiomics-combined machine learning reveals microscopic ultra-early hepatocellular carcinoma lesions
por: Sun, Kui, et al.
Publicado: (2022) -
Contribution of whole slide imaging‐based deep learning in the assessment of intraoperative and postoperative sections in neuropathology
por: Shi, Liting, et al.
Publicado: (2023) -
Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2019) -
Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
por: Korbar, Bruno, et al.
Publicado: (2017) -
Corrigendum: Deep Learning for Whole Slide Image Analysis: An Overview
por: Dimitriou, Neofytos, et al.
Publicado: (2020)