Cargando…
Deep learning for the prediction of residual tumor after radiotherapy and treatment decision-making in patients with nasopharyngeal carcinoma based on magnetic resonance imaging
BACKGROUND: Concurrent chemoradiotherapy (CCRT) and induction chemotherapy (IC) plus CCRT (IC + CCRT) are the main treatments for patients with advanced nasopharyngeal carcinoma (NPC). We aimed to develop deep learning (DL) models using magnetic resonance (MR) imaging to predict the risk of residual...
Autores principales: | Hua, Hong-Li, Li, Song, Huang, Huan, Zheng, Yong-Fa, Li, Fen, Li, Sheng-Lan, Deng, Yu-Qin, Tao, Ze-Zhang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10240011/ https://www.ncbi.nlm.nih.gov/pubmed/37284077 http://dx.doi.org/10.21037/qims-22-1226 |
Ejemplares similares
-
Deep Learning for Predicting Distant Metastasis in Patients with Nasopharyngeal Carcinoma Based on Pre-Radiotherapy Magnetic Resonance Imaging
por: Hua, Hong-Li, et al.
Publicado: (2023) -
Diagnostic Value of Magnetic Resonance Spectroscopy in Radiation Encephalopathy Induced by Radiotherapy for Patients with Nasopharyngeal Carcinoma: A Meta-Analysis
por: Chen, Wang-Sheng, et al.
Publicado: (2016) -
Anatomical Partition‐Based Deep Learning: An Automatic Nasopharyngeal MRI Recognition Scheme
por: Li, Song, et al.
Publicado: (2022) -
The Efficacy of Radiotherapy for Nasopharyngeal Carcinoma under Magnetic Resonance Imaging
por: Zhang, Hao, et al.
Publicado: (2021) -
Fractionated stereotactic radiotherapy for 136 patients with locally residual nasopharyngeal carcinoma
por: Liu, Feng, et al.
Publicado: (2013)